Sentimental Business Cycles

Andresa Lagerborg, Evi Pappa, Morten O. Ravn IMF, EUI, UCL, CEPR and CfM

ECB, Money Macro Workshop, 21st of March 2019

Introduction

Sources of fluctuations in the economy: Much work estimates impact of 'fundamental shocks' on the economy:

- Technology shocks / investment specific shocks.
- Monetary/ fiscal/ credit/ trade policy shocks.
- Oil price shocks/ commodity price shocks.
- TFP uncertainty shocks/ policy uncertainty shocks.

Other shocks: Large share of the variances of macro aggregates remains unaccounted for:

- News (about fundamentals) shocks.
- Animal spirits / expectational shocks / non-fundamental shocks.

Non-Fundamental Shocks

Key Challenge: How to estimate causal effects?

- Sentiments hard to translate into observables.
- Multiple equilibria: Some attempts using structural models.
- Animal spirits: Variety of recent attempts
 - Barsky and Sims (2012),
 - Levchenko and Pandalai-Nayar (2018), Forni et al. (2013)
 - Mian, Sufi and Khouskou (2015), Benhabib and Spiegel (2016), Feve and Guay (2018), Lagerborg (2017)

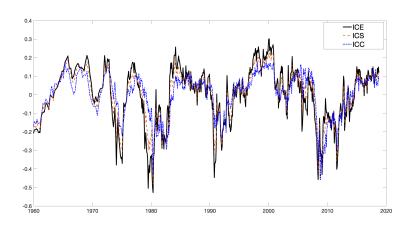
This paper: Central Contributions

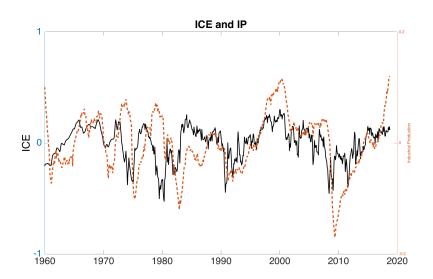
- 1. Empirics: Estimate the dynamic causal effects of sentiment shocks:
 - Propose IV strategy for estimation.
 - Combine IV with SVAR to estimate dynamic causal effects.
- 2. Theory: Build model and apply it for structural analysis:
 - Incomplete information and Bayesian learning.
 - Heterogeneous Agents New Keynesian with Search and Matching in labor market.
 - HANK&SAM provides amplification mechanism.
- 3. Quantification: Estimate key structural parameters:
 - Simulation based estimates of structural parameters.

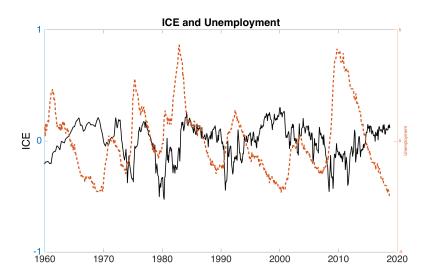
This paper: Key Findings

- **1. Empirics**: A deterioration in consumer confidence:
 - raises unemployment, decreases industrial production and consumption persistently
 - reduces the nominal interest rate and is non-deflationary

Sentimental Business Cycles: Sentimental shocks explain between 16 and 28 % of variance of unemployment and 10 to 20 % of fluctuations in industrial production at business cycle frequencies.


- **2. Theory**: Shocks to sentiments induces a powerful supply-demand feedback mechanism:
 - Countercyclical risk wedge important for amplification of negative demand effects.
 - Monetary policy can moderate demand effects.
 - Non-deflation results from interaction of supply-demand feedback.


Sentiments: Draw data from University of Michigan Survey of Consumer Confidence:


- Conducted since late 1940's;
- Monthly since 1977 (quarterly since 1952);
- 500 randomly drawn persons are interviewed per month;
- Asked about own situation and about US economy;

Three broad indices:

- Index of Consumer Sentiment (ICS): A mix of:
- Index of Current Economic Conditions (ICC), and
- Index of Consumer Expectations (ICE).

Does Consumer Confidence indices contain valuable information?

• Matsusaka and Sbordone (1995): ICS Granger causes GDP.

Does Consumer Confidence indices contain valuable information?

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- Carroll, Fuhrer and Wilcox (1994): ICS has predictive power for consumption growth (controlling for income).

Does Consumer Confidence indices contain valuable information?

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- Carroll, Fuhrer and Wilcox (1994): ICS has predictive power for consumption growth (controlling for income).
- Ludvigson (2004): ICE has predictive power for aggregate consumption growth (but not after controlling for the consumption-wealth ratio).

Does Consumer Confidence indices contain valuable information?

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- Carroll, Fuhrer and Wilcox (1994): ICS has predictive power for consumption growth (controlling for income).
- Ludvigson (2004): ICE has predictive power for aggregate consumption growth (but not after controlling for the consumption-wealth ratio).
- Problem: Predictive power / Granger causality no causal interpretation, could be due to news about fundamentals.

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

• How do we isolate non-fundamental component?

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

```
CI = F( fundamentals, news, noise, \underbrace{\text{sentiments}}_{\text{instrumented}})
```

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

$$CI = F($$
 fundamentals, news, noise, sentiments) instrumented

• We adopt Proxy SVAR estimator (Mertens & Ravn, AER, 2013).

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

$$CI = F($$
 fundamentals, news, noise, $\underbrace{\text{sentiments}}$ instrumented

- We adopt Proxy SVAR estimator (Mertens & Ravn, AER, 2013).
- Use an external instrument to proxy for the sturctural shock.

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

$$CI = F($$
 fundamentals, news, noise, sentiments) instrumented

- We adopt Proxy SVAR estimator (Mertens & Ravn, AER, 2013).
- Use an external instrument to proxy for the sturctural shock.
- Can be estimated with 2SLS or 3SLS.

Assume that the dynamics of observables is:

$$\mathbf{X}_t = \mathbf{A}(L)\mathbf{X}_{t-1} + \mathbf{u}_t$$
 innovations $\mathbf{u}_t = \mathbf{B} \mathbf{e}_t$ structural shocks

• Structural shocks not observed.

Assume that the dynamics of observables is:

$$\mathbf{X}_t = \mathbf{A}(L)\mathbf{X}_{t-1} + \mathbf{u}_t$$
 innovations $\mathbf{u}_t = \mathbf{B} \mathbf{e}_t$ structural shocks

- Structural shocks not observed.
- We want to identify the relevant column of **B**.

Assume that the dynamics of observables is:

$$\mathbf{X}_t = \mathbf{A}(L)\mathbf{X}_{t-1} + \mathbf{u}_t$$
 innovations $\mathbf{u}_t = \mathbf{B} \mathbf{e}_t$ structural shocks

- Structural shocks not observed.
- We want to identify the relevant column of B.
- Order CI (wlog) first

Identification

• Aim: Identify structural shock to CI and its effects

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extsf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extsf{CI},t}
ight)=0$ (Exogeneity)

Identification

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{\mathbf{CI},t}\right)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq\mathbf{CI},t}\right)=0$ (Exogeneity)

 \Rightarrow s_t identifies $e_{CI,t}$ and B_{CI} column.

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

- \Rightarrow s_t identifies $e_{Cl,t}$ and B_{Cl} column.
 - From this can compute identified impulse responses etc.

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

- \Rightarrow s_t identifies $e_{CI,t}$ and B_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extsf{CI},t}
ight) = \varphi
eq 0 \qquad \qquad ext{(Relevance)}$$
 $\mathbb{E}\left(s_{t}e_{
eq extsf{CI},t}
ight) = 0 \qquad \qquad ext{(Exogeneity)}$

- \Rightarrow s_t identifies $e_{CI,t}$ and B_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR
 - Proxy needs to be correlated with true shock but not equal to it

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{\mathbf{CI},t}\right)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq\mathbf{CI},t}\right)=0$ (Exogeneity)

- \Rightarrow s_t identifies $e_{CI,t}$ and B_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR
 - Proxy needs to be correlated with true shock but not equal to it
 - Allows for measurement errors and one can correct for scaling issues

Instrument: Fatalities in mass shootings in the US.

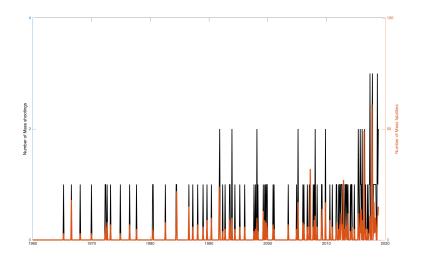
• mass shootings = 3 fatalities or more (perpetrator excluded), lone shooter, public space.

- mass shootings = 3 fatalities or more (perpetrator excluded), lone shooter, public space.
- Source: MotherJones 1982-2019, Duwe (2007)-News Archives-Wikipedia 1960-81

- mass shootings = 3 fatalities or more (perpetrator excluded), lone shooter, public space.
- **Source**: MotherJones 1982-2019, Duwe (2007)-News Archives-Wikipedia 1960-81
- 119 events in total, 21 had 10 fatalities or more.

- mass shootings = 3 fatalities or more (perpetrator excluded), lone shooter, public space.
- **Source**: MotherJones 1982-2019, Duwe (2007)-News Archives-Wikipedia 1960-81
- 119 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.

- mass shootings = 3 fatalities or more (perpetrator excluded), lone shooter, public space.
- **Source**: MotherJones 1982-2019, Duwe (2007)-News Archives-Wikipedia 1960-81
- 119 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.
- Most perpetrators male, only 2.5% women perpetrators in sample.


- mass shootings = 3 fatalities or more (perpetrator excluded), lone shooter, public space.
- Source: MotherJones 1982-2019, Duwe (2007)-News Archives-Wikipedia 1960-81
- 119 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.
- Most perpetrators male, only 2.5% women perpetrators in sample.
- Mass shootings are unpredictable over time.

- mass shootings = 3 fatalities or more (perpetrator excluded), lone shooter, public space.
- **Source**: MotherJones 1982-2019, Duwe (2007)-News Archives-Wikipedia 1960-81
- 119 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.
- Most perpetrators male, only 2.5% women perpetrators in sample.
- Mass shootings are unpredictable over time.
- Each event unlikely to bear much in terms of direct costs.

Mass Shootings with 12 or More Fatalities

Incident	Location	Date	Fat.	Inj.
U. of Texas Tower shooting	Austin, Tx	Aug 1966	18	31
San Ysidro's McD massacre	San Ysidro, Cal	Jul 1984	22	19
U.S. Postal Service shooting	Edmond, Okl	Aug 1986	15	6
Luby's massacre	Killeen, TX	Oct 1991	24	20
Columbine High massacre	Littleton, Col	Apr 1999	13	24
Virginia Tech massacre	Blacksburg, VA	Apr 2007	32	23
Binghampton shootings	Binghampton, NY	Apr 2009	14	4
Fort Hood massacre	Fort Hood, TX	Nov 2009	13	30
Aurora Theatre shooting	Aurora, Col	Jul 2012	12	70
Sandy Hook massacre	Newtown, Conn	Dec 2012	28	2
Wash. Navy Yard shooting	Washington, D.C.	Sep 2013	12	8
San Bernadino mass shooting	San Bernadino, Cal	Dec 2015	14	21
Orlando Nightclub massacre	Orlando, FL	Jun 2016	49	53
Las Vegas Strip massacre	Las Vegas, Nevada	Oct 2017	58	546
Texas First Baptist Church mass.	Sutherland Springs, TX	Nov 2017	26	20
Marjory Stonemann Douglas High School	Parkland, FL	Feb 2018 🗆	► 4 17 ►	4 ≣17

Fatalities in Mass Shootings

Mechanism: Shooting -> News -> Confidence

Incident	Year	TV cov.	TV time	Articles	Words
Sandy Hook	2012	168	15:57:10	130	118,354
Fort Hood sh.	2009	31	05:05:00	36	35,097
Virginia Tech shooting	2007	59	06:12:12	36	33,473
Aurora sh.	2012	70	08:49:48	75	23,715
Red Lake massacre	2005	20	00:55:12	19	18,519

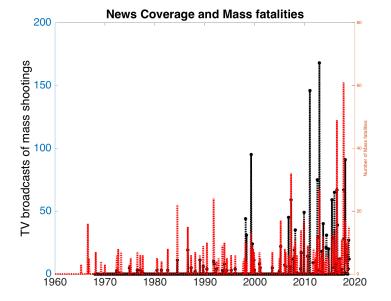
(Vanderbilt TV News Archive, Schildkraut, Elsass and Meredith, 2017)

• Conclusion: Many (most) Americans would be aware of mass shooting events.

Mechanism: Shooting -> News -> Confidence

Incident	Year	TV cov.	TV time	Articles	Words
Sandy Hook	2012	168	15:57:10	130	118,354
Fort Hood sh.	2009	31	05:05:00	36	35,097
Virginia Tech shooting	2007	59	06:12:12	36	33,473
Aurora sh.	2012	70	08:49:48	75	23,715
Red Lake massacre	2005	20	00:55:12	19	18,519

(Vanderbilt TV News Archive, Schildkraut, Elsass and Meredith, 2017)


- Conclusion: Many (most) Americans would be aware of mass shooting events.
- Lankford (2018): Mass killers (7 biggest shootings since 2012)
 received more news coverage than top sports stars and celebrities.

Mechanism: Shooting -> News -> Confidence

Incident	Year	TV cov.	TV time	Articles	Words
Sandy Hook	2012	168	15:57:10	130	118,354
Fort Hood sh.	2009	31	05:05:00	36	35,097
Virginia Tech shooting	2007	59	06:12:12	36	33,473
Aurora sh.	2012	70	08:49:48	75	23,715
Red Lake massacre	2005	20	00:55:12	19	18,519

(Vanderbilt TV News Archive, Schildkraut, Elsass and Meredith, 2017)

- Conclusion: Many (most) Americans would be aware of mass shooting events.
- Lankford (2018): Mass killers (7 biggest shootings since 2012) received more news coverage than top sports stars and celebrities.
- Mass shootings impact on psychological well-being: PTSD symptoms (Hughes et al, 2011), subjective well-being (Clark and Stancanelli, 2017) - potential for direct impact on confidence.

Implementation: US time series data:

• Monthly data.

- Monthly data.
- Sample period 1960:1 2015:1.

- Monthly data.
- Sample period 1960:1 2015:1.
- Estimate VAR with 18 lags.

- Monthly data.
- Sample period 1960:1 2015:1.
- Estimate VAR with 18 lags.
- Benchmark VAR:

$$\mathbf{X}_t = \left(egin{array}{ll} CI_t & (ext{log consumer confidence}) \ Y_t & (ext{log industrial production}) \ U_t & (ext{unemployment rate}) \ P_t & (ext{log CPI}) \ R_t & (ext{Federal funds rate}) \end{array}
ight)$$

Implementation: US time series data:

- Monthly data.
- Sample period 1960:1 2015:1.
- Estimate VAR with 18 lags.
- Benchmark VAR:

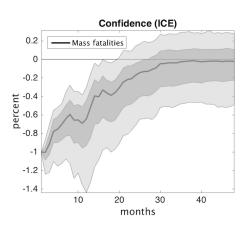
$$\mathbf{X}_t = \left(egin{array}{ll} CI_t & (ext{log consumer confidence}) \ Y_t & (ext{log industrial production}) \ U_t & (ext{unemployment rate}) \ P_t & (ext{log CPI}) \ R_t & (ext{Federal funds rate}) \end{array}
ight)$$

• Detrend all apart from R_t with 4th order time polynomial.

- Monthly data.
- Sample period 1960:1 2015:1.
- Estimate VAR with 18 lags.
- Benchmark VAR:

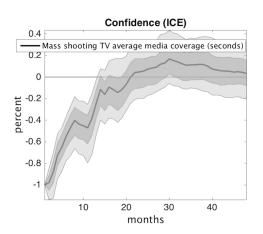
$$\mathbf{X}_t = \left(egin{array}{ll} C I_t & ext{(log consumer confidence)} \ Y_t & ext{(log industrial production)} \ U_t & ext{(unemployment rate)} \ P_t & ext{(log CPI)} \ R_t & ext{(Federal funds rate)} \end{array}
ight)$$

- Detrend all apart from R_t with 4th order time polynomial.
- Instrument: Detrended fatalities or TV media coverage


Relevance

Weak Instrument tests, VAR with 18 lags						
	Instrument					
	Fatalit	ies	News coverage*			
Sample	Fhom	F ^{MOP}	F^hom	F^{MOP}		
1960-2015:1	12.43	6.76	-	-		
1968-2015:1	-	-	15.83	52.20		
1960-2017:6	11.13	6.36	-	-		
1968-2017:6	-	-	11.15	3.53		
1960-2007:9	5.50	4.30	-	-		
1968-2007:9	-	-	3.5	34.82		

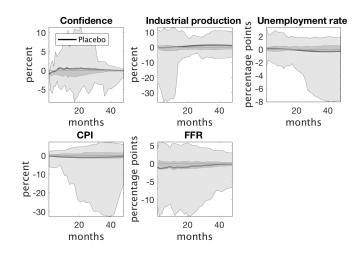
^{*}Logistic transformation


 Use Montiel Olea, Stock and Watson (2017) parametric bootstrap with Newey-West HAC-robust covariance matrix

Relevance

- Significant drop in ICE for approximately 2 years.
- Relevance √

Relevance



- Slightly more precisely estimated for full sample
- Relevance √

Placebo: Random Reshuffling of Shootings

IV with random reshuffling of mass fatalities

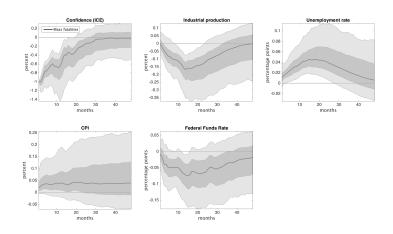
Impulse Responses

Dynamic Causal Effects: Now look at dynamic causal effects of autonomous changes in consumer sentiments.

• Normalization: 1 percent drop in consumer confidence.

Impulse Responses

Dynamic Causal Effects: Now look at dynamic causal effects of autonomous changes in consumer sentiments.


- Normalization: 1 percent drop in consumer confidence.
- Augment with other variables.

Impulse Responses

Dynamic Causal Effects: Now look at dynamic causal effects of autonomous changes in consumer sentiments.

- Normalization: 1 percent drop in consumer confidence.
- Augment with other variables.
- Look at relationship to other shocks.

Benchmark VAR

Dynamic Causal Effects: Robustness and impact on other variables:

Robust to using news coverage.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.
- Robust to removing individual big shootings.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.
- Robust to removing individual big shootings.

Other variables:

Drop in consumption.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.
- Robust to removing individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.
- Robust to removing individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.
- Robust to removing individual big shootings.

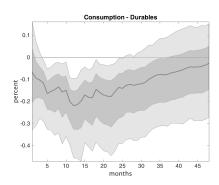
- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.

Dynamic Causal Effects: Robustness and impact on other variables:

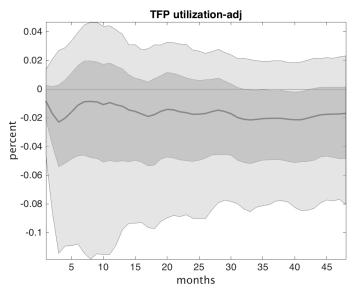
- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.
- Robust to removing individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.
- TFP: No impact.

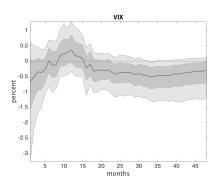
Dynamic Causal Effects: Robustness and impact on other variables:

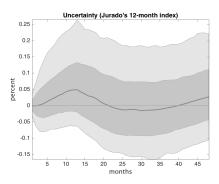

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to not detrending fatalities.
- Robust to removing individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.
- TFP: No impact.
- Relationship to uncertainty: No significant impact.

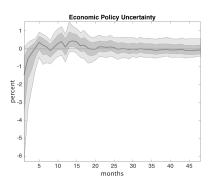


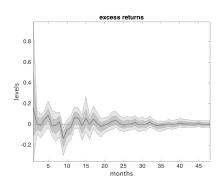
Consumption





Fernald Capacity Util. Adj. TFP




Uncertainty

EPU and Stock Market Returns

Business Cycles

Contribution to Business Cycles:

	Variable							
Horizon	ICE	IP	U	CPI	FFR	Hrs	TIGHT	V
1	65	3	21	21	3	1	38	9
3	61	6	19	24	6	1	35	7
6	59	9	20	21	8	2	35	7
12	59	17	26	16	11	6	37	13
24	49	21	28	11	15	6	35	14
48	45	13	16	8	12	6	30	13

• Important for labor market

Theory

Households:

- Search for jobs.
- Face uninsurable unemployment risk.
- Save in bonds and equity.

Firms:

- Monopolistically competitive.
- Face Rotemberg (1982) quadratic price adjustment costs.
- Hire labor in frictional matching market.

Monetary Authority:

Sets short term nominal interest rate.

Theory

Fundamental Shocks:

- Persistent aggregate productivity shocks.
- Transitory aggregate productivity shocks.
- Monetary policy shock.

Information:

 Imperfect common information: Only sum of productivity shocks observed.

Non-fundamental shock:

Noisy signal about persistent productivity shock.

$$\begin{array}{ccc} & & \text{(filtering)} \\ \text{Noise shock(-)} & \rightarrow & \text{Confused with } \mathbf{A}^P \downarrow \end{array}$$

$$\begin{array}{ccc} \text{(filtering)} \\ \text{Noise shock(-)} & \rightarrow & \text{Confused with } \mathbf{A}^P \downarrow \\ & \downarrow \\ & \text{goods demand } \downarrow \end{array}$$

Households - Preferences

Composition: Continuum of single-member households.

Preferences:

$$\mathcal{V}_{it} = \max \widehat{\mathbb{E}}_t \sum_{s=t}^{\infty} \beta^{s-t} \left(\frac{\mathbf{c}_{i,s}^{1-\mu} - 1}{1-\mu} - \zeta \mathbf{n}_{i,s} \right),$$

Consumption:

$$\mathbf{c}_{i,s} = \left(\int \left(c_{i,s}^j\right)^{1-1/\gamma} dj\right)^{1/(1-1/\gamma)}$$

Employment Status and Earnings:

$$\mathbf{n}_{i,s} = \begin{cases} 0 \text{ if not employed at date } s, \text{ home production } \vartheta \\ 1 \text{ if employed at date } s, \text{ earns wage } w_{i,s} \end{cases}$$

Technology - Production and Hiring

Technology:

$$\mathbf{y}_{j,s} = \exp\left(\mathbf{A}_{s}\right) \left(\mathbf{z}_{js} \mathbf{k}_{js}\right)^{\tau} \mathbf{n}_{j,s}^{1-\tau}$$

Employment Dynamics:

$$\mathbf{n}_{j,s} = (1-\omega)\mathbf{n}_{j,s-1} + \mathbf{h}_{j,s}$$

Hiring:

$$\mathbf{h}_{j,s} = \mathbf{q}_s \mathbf{v}_{j,s}$$

• $v_{j,s} \ge 0$, flow cost $\kappa > 0$ per unit.

Capital accumulation:

$$\mathbf{k}_{j,s+1} = (1 - \delta\left(\mathbf{z}_{j,s}\right))\mathbf{k}_{j,s} + \mathbf{i}_{j,s}$$

Matching technology

Timing: (i) job losses, (ii) hiring, (iii) production.

Matching function:

$$\mathbf{M}_s = \overline{m} \mathbf{u}_s^{lpha} \mathbf{v}_s^{1-lpha},$$
 $\mathbf{v}_s = \int_j \mathbf{v}_{j,s} dj$

Matching rates: Let $\theta_s = \mathbf{v}_s/\mathbf{u}_s$ denote labor market tightness:

job finding rate:
$$\eta_s = \frac{\mathbf{M}_s}{\mathbf{u}_s} = \overline{m}\theta_s^{1-\alpha}$$

vacancy filling rate:
$$\mathbf{q}_s = \frac{\mathbf{M}_s}{\mathbf{v}_s} = \overline{m}^{1/(1-\alpha)} \eta_s^{-\alpha/(1-\alpha)}$$

Prices, Wages, Interest Rates

Price Setting: Monopolistically competition firms, price adjustment costs:

$$\max \widehat{\mathbb{E}}_t \sum_{s=t}^{\infty} \Lambda_{j,t,s} \left[\frac{\mathbf{P}_{j,s}}{\mathbf{P}_s} \mathbf{y}_{j,s} - \mathbf{w}_s \mathbf{n}_{j,s} - \kappa \mathbf{v}_{j,s} - \mathbf{i}_{j,s} - \frac{\phi}{2} \left(\frac{\mathbf{P}_{j,s} - \mathbf{P}_{j,s-1}}{\mathbf{P}_{j,s-1}} \right)^2 \mathbf{y}_s \right]$$

subject to:

$$\begin{aligned} \mathbf{y}_{j,s} &= \exp\left(\mathbf{A}_{s}\right) \left(\mathbf{z}_{j,s} \mathbf{k}_{j,s}\right)^{\tau} \mathbf{n}_{j,s}^{1-\tau} \\ \mathbf{n}_{j,s} &= \left(1-\omega\right) \mathbf{n}_{j,s-1} + \mathbf{h}_{j,s} \\ \mathbf{k}_{j,s+1} &= \left(1-\delta\left(\mathbf{z}_{j,s}\right)\right) \mathbf{k}_{j,s} + \mathbf{i}_{j,s} \\ \mathbf{y}_{j,s} &= \left(\frac{\mathbf{P}_{j,s}}{\mathbf{P}_{s}}\right)^{-\gamma} \mathbf{y}_{s} \end{aligned}$$

• $\Lambda_{j,t,s}$: firm owners' intertemporal discount factor.

Wages, Interest Rates, Asset Markets

Wages: Wage function:

$$\mathbf{w}_s = \overline{\mathbf{w}} \left(rac{\eta_s}{\overline{\eta}}
ight)^{\chi}$$

- Simplifies marginally by avoiding having wealth dependent wages.
- Correspond to Nash bargaining solution depending on parameters.

Monetary Policy: Interest Rate Rule:

$$\mathbf{R}_{s} = \mathbf{R}_{s-1}^{\delta_{R}} \left(\overline{R} \left(\frac{\Pi_{s}}{\overline{\Pi}} \right)^{\delta_{\pi}} \right)^{1-\delta_{R}} \exp \left(\mathbf{e}_{s}^{R} \right)$$

Assets and Borrowing Constraints: Limited participation

Bonds: $b_{i,s}$ - in zero net supply.

Equity: $x_{i,s}$ - positive net supply - only held by small subset of rich entrepreneurs

Tractable Equilibrium

Euler Equations:

$$\begin{split} \mathbf{c}_{r,s}^{-\mu} &\geq \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \mathbf{c}_{r,s+1}^{-\mu}, \\ \mathbf{c}_{u,s}^{-\mu} &\geq \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \left((1 - \eta_{s+1}) \, \mathbf{c}_{u,s+1}^{-\mu} + \eta_{s+1} \mathbf{c}_{e,s+1}^{-\mu} \right), \\ \mathbf{c}_{e,s}^{-\mu} &\geq \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \left(\omega \, (1 - \eta_{s+1}) \, \mathbf{c}_{u,s+1}^{-\mu} + (1 - \omega \, (1 - \eta_{s+1})) \, \mathbf{c}_{e,s+1}^{-\mu} \right), \end{split}$$

- Entrepreneurs face no idiosyncratic risk.
- Asset poor unemployed will be in a corner.
- Asset poor employed will be on their Euler equation.
- Asset poor employed price the bonds.

Technology: Sum of persistent and transitory component:

$$\begin{aligned} \mathbf{A}_s &= \mathbf{A}_s^P + \boldsymbol{\varepsilon}_s^T, \ \boldsymbol{\varepsilon}_s^T \sim \operatorname{nid}\left(\mathbf{0}, \sigma_T^2\right) \\ \mathbf{A}_s^P &= \rho_A \mathbf{A}_{s-1}^P + \boldsymbol{\varepsilon}_s^P, \ \boldsymbol{\varepsilon}_s^P \sim \operatorname{nid}\left(\mathbf{0}, \sigma_P^2\right) \end{aligned}$$

Information: Imperfect common information.

• $\mathbf{A}_s \in I_s$ but \mathbf{A}_s^P , $\varepsilon_s^T \notin I_s$.

Monetary Policy:

$$\mathbf{e}_{s}^{R}=\varphi\varepsilon_{s}^{S}+\varepsilon_{s}^{R},\ \varepsilon_{s}^{R}\sim\operatorname{nid}\left(\mathbf{0},\sigma_{R}^{2}\right)$$

Technology: Sum of persistent and transitory component:

$$\begin{aligned} \mathbf{A}_s &= \mathbf{A}_s^P + \boldsymbol{\varepsilon}_s^T, \ \boldsymbol{\varepsilon}_s^T \sim \operatorname{nid}\left(\mathbf{0}, \sigma_T^2\right) \\ \mathbf{A}_s^P &= \rho_A \mathbf{A}_{s-1}^P + \boldsymbol{\varepsilon}_s^P, \ \boldsymbol{\varepsilon}_s^P \sim \operatorname{nid}\left(\mathbf{0}, \sigma_P^2\right) \end{aligned}$$

Information: Imperfect common information.

- $\mathbf{A}_s \in I_s$ but $\mathbf{A}_s^P, \varepsilon_s^T \notin I_s$.
- Agents receive a signal on \mathbf{A}_s^P :

$$\Psi_s = \mathbf{A}_s^P + \varepsilon_s^S, \ \varepsilon_s^S \sim \operatorname{nid}\left(0, \sigma_S^2\right)$$

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arphi arepsilon_{s}^{S}+arepsilon_{s}^{R},\ arepsilon_{s}^{R}\sim\operatorname{nid}\left(0,\sigma_{R}^{2}
ight)$$

Technology: Sum of persistent and transitory component:

$$\begin{aligned} \mathbf{A}_s &= \mathbf{A}_s^P + \boldsymbol{\varepsilon}_s^T, \ \boldsymbol{\varepsilon}_s^T \sim \operatorname{nid}\left(0, \sigma_T^2\right) \\ \mathbf{A}_s^P &= \rho_A \mathbf{A}_{s-1}^P + \boldsymbol{\varepsilon}_s^P, \ \boldsymbol{\varepsilon}_s^P \sim \operatorname{nid}\left(0, \sigma_P^2\right) \end{aligned}$$

Information: Imperfect common information.

- $\mathbf{A}_s \in I_s$ but $\mathbf{A}_s^P, \varepsilon_s^T \notin I_s$.
- Agents receive a signal on \mathbf{A}_s^P :

$$\Psi_s = \mathbf{A}_s^P + \varepsilon_s^S$$
, $\varepsilon_s^S \sim \operatorname{nid}\left(0, \sigma_S^2\right)$

• ε_s^S : sentiment / expectational shock.

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arphi arepsilon_{s}^{S}+arepsilon_{s}^{R},\ arepsilon_{s}^{R}\sim \mathrm{nid}\left(0,\sigma_{R}^{2}
ight)$$

Technology: Sum of persistent and transitory component:

$$\begin{aligned} \mathbf{A}_s &= \mathbf{A}_s^P + \boldsymbol{\varepsilon}_s^T, \ \boldsymbol{\varepsilon}_s^T \sim \operatorname{nid}\left(0, \sigma_T^2\right) \\ \mathbf{A}_s^P &= \rho_A \mathbf{A}_{s-1}^P + \boldsymbol{\varepsilon}_s^P, \ \boldsymbol{\varepsilon}_s^P \sim \operatorname{nid}\left(0, \sigma_P^2\right) \end{aligned}$$

Information: Imperfect common information.

- $\mathbf{A}_s \in I_s$ but $\mathbf{A}_s^P, \varepsilon_s^T \notin I_s$.
- Agents receive a signal on \mathbf{A}_s^P :

$$\Psi_s = \mathbf{A}_s^P + \varepsilon_s^S, \ \varepsilon_s^S \sim \operatorname{nid}\left(0, \sigma_S^2\right)$$

• ε_s^S : sentiment / expectational shock.

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arphi arepsilon_{s}^{S}+arepsilon_{s}^{R}$$
 , $\ arepsilon_{s}^{R}\sim \operatorname{nid}\left(0,\sigma_{R}^{2}
ight)$

• Sentiments impact directly and indirectly on monetary policy.

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

① Discounting: $\hat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^F \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_s \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_t - \mathbb{E}_t \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^F \mathbb{E}_t \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^F \equiv \underbrace{\omega\eta\left(\left(\vartheta/w\right)^{-\mu}-1\right)}_{\text{unemployment risk}} - \underbrace{\chi\mu\omega\left(1-\eta\right)}_{\text{wage risk}}$$

• procyclical if $\Theta^F < 0$: Stabilization

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^F \equiv \underbrace{\omega\eta\left(\left(\vartheta/w\right)^{-\mu}-1\right)}_{\text{unemployment risk}} - \underbrace{\chi\mu\omega\left(1-\eta\right)}_{\text{wage risk}}$$

- procyclical if $\Theta^F < 0$: Stabilization
- countercyclical if $\Theta^F > 0$: Amplification/Propagation

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

- procyclical if $\Theta^F < 0$: Stabilization
- countercyclical if $\Theta^F > 0$: Amplification/Propagation
- **acyclical** if $\Theta^F = 0$: No endogenous risk feedback.

Countercyclical risk: Amplification

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.
- Procyclical risk: Stabilization

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.
- Procyclical risk: Stabilization
- recession \Rightarrow lower real wage \Rightarrow less precautionary savings demand \Rightarrow demand expands at the current real interest rate \Rightarrow stabilization.

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.
- Procyclical risk: Stabilization
- recession ⇒ lower real wage ⇒ less precautionary savings demand ⇒ demand expands at the current real interest rate ⇒ stabilization.
- Hence, key to the endogenous risk channel is whether unemployment risk or wage risk matters most.

Estimation: Divide parameters into two sets:

• Θ_1 : Calibrated.

Estimation: Divide parameters into two sets:

- Θ₁: Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{\textit{d}}^{-1} \left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

Estimation: Divide parameters into two sets:

- Θ_1 : Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{\textit{d}}^{-1} \left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

• $\widehat{\Lambda}_T^d$: Moments that are matched:

$$\widehat{\Lambda}_T^d = \left[\mathbf{F} - \mathbf{stat}, \sigma_{\mathbf{Solow}}^2, \mathbf{IRF}_{nfore}\right]$$

$$\mathbf{IRF}_{nfore} = \left[\mathrm{identified\ impulse\ resp.\ to\ sentiments}\right]_1^{nfore}$$

Estimation: Divide parameters into two sets:

- Θ_1 : Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{\textit{d}}^{-1} \left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

• $\widehat{\Lambda}_T^d$: Moments that are matched:

$$\widehat{\Lambda}_{T}^{d} = \left[\mathbf{F} - \mathbf{stat}, \sigma_{\mathbf{Solow}}^{2}, \mathbf{IRF}_{nfore}\right]$$

$$\mathbf{IRF}_{nfore} = \left[\mathrm{identified\ impulse\ resp.\ to\ sentiments}\right]_{1}^{nfore}$$

• $\Lambda^m_T(\Theta_2|\Theta_1)$: Model equivalents of $\widehat{\Lambda}^d_T$ obtained by simulation.

$$\mathbf{X}_{t}^{\textit{theory}} = \left(egin{array}{ll} \textit{CI}_{t} & (ext{log consumer confidence}) \\ \textit{Y}_{t} & (ext{log industrial production}) \\ \textit{U}_{t} & (ext{unemployment rate}) \\ \textit{P}_{t} & (ext{log CPI}) \\ \textit{R}_{t} & (ext{Federal funds rate}) \end{array}
ight)$$

Simulate model to generate:

$$\mathbf{X}_{t}^{\textit{theory}} = \left(egin{array}{ll} \textit{CI}_{t} & (ext{log consumer confidence}) \\ \textit{Y}_{t} & (ext{log industrial production}) \\ \textit{U}_{t} & (ext{unemployment rate}) \\ \textit{P}_{t} & (ext{log CPI}) \\ \textit{R}_{t} & (ext{Federal funds rate}) \end{array}
ight)$$

② Add measurement error to $\widetilde{\mathbf{X}}_t^{theory} = \mathbf{X}_t^{theory} + m_{1,t}$, detrend.

$$\mathbf{X}_{t}^{\textit{theory}} = \left(egin{array}{ll} \textit{Cl}_{t} & (ext{log consumer confidence}) \\ \textit{Y}_{t} & (ext{log industrial production}) \\ \textit{U}_{t} & (ext{unemployment rate}) \\ \textit{P}_{t} & (ext{log CPI}) \\ \textit{R}_{t} & (ext{Federal funds rate}) \end{array}
ight)$$

- ② Add measurement error to $\widetilde{\mathbf{X}}_t^{theory} = \mathbf{X}_t^{theory} + m_{1,t}$, detrend.
- **3** Use $\varepsilon_t^S + m_{2,t}$ as proxy for sentiment shock.

$$\mathbf{X}_{t}^{\textit{theory}} = \left(egin{array}{ll} \textit{Cl}_{t} & (ext{log consumer confidence}) \\ \textit{Y}_{t} & (ext{log industrial production}) \\ \textit{U}_{t} & (ext{unemployment rate}) \\ \textit{P}_{t} & (ext{log CPI}) \\ \textit{R}_{t} & (ext{Federal funds rate}) \end{array}
ight)$$

- ② Add measurement error to $\widetilde{\mathbf{X}}_t^{theory} = \mathbf{X}_t^{theory} + m_{1,t}$, detrend.
- **1** Use $\varepsilon_t^S + m_{2,t}$ as proxy for sentiment shock.
- $\textbf{ § Estimate Proxy SVAR on theory data and obtain } \Lambda^m_T \left(\Theta_2 \middle| \Theta_1 \right)_i.$

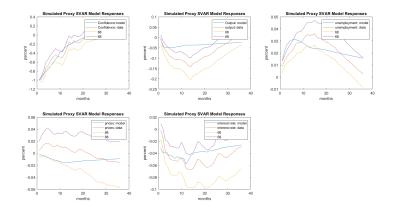
$$\mathbf{X}_{t}^{\textit{theory}} = \left(egin{array}{ll} \textit{Cl}_{t} & (ext{log consumer confidence}) \\ \textit{Y}_{t} & (ext{log industrial production}) \\ \textit{U}_{t} & (ext{unemployment rate}) \\ \textit{P}_{t} & (ext{log CPI}) \\ \textit{R}_{t} & (ext{Federal funds rate}) \end{array}
ight)$$

- ② Add measurement error to $\widetilde{\mathbf{X}}_t^{theory} = \mathbf{X}_t^{theory} + m_{1,t}$, detrend.
- **1** Use $\varepsilon_t^S + m_{2,t}$ as proxy for sentiment shock.
- **3** Estimate Proxy SVAR on theory data and obtain $\Lambda_T^m\left(\Theta_2|\Theta_1\right)_i$.
- Sepeat N times and average:

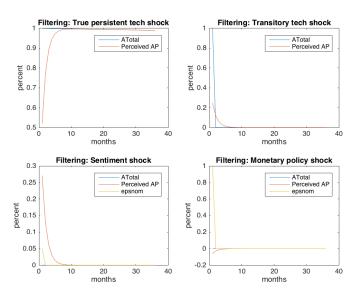
$$\Lambda_{T}^{m}\left(\Theta_{2}|\Theta_{1}\right) = \frac{1}{N} \sum_{i=1}^{N} \Lambda_{T}^{m}\left(\Theta_{2}|\Theta_{1}\right)_{i}$$

Calibrated parameters (monthly)

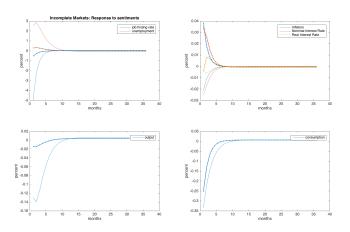
Parameter	Meaning	Value	
ū	st.st. unemployment rate	6 percent	
$\overline{\eta}$	st.st. job finding rate	34 percent	
$(\kappa/\overline{\mathbf{q}}) / (3\overline{\mathbf{w}})$	st.st. hiring cost	4.5 percent	
$\overline{\mathbf{R}}/\overline{\Pi}$	st.st. gross real rate	$1.04^{1/12}$	
$\overline{\Pi}$	st.st. gross inflation rate	1	
δ_R	interest rate smoothing	0.25	
σ_{m}	st. dev., monetary pol. shock	0.1 percent	
γ	elasticity of substitution	8	
μ	CRRA parameter	2	
α	matching function parameter	0.5	
au	output elasticity to capital	0.35	
$\xi_{\delta,z}$	elast. of depr. rate to cap.ut.	1	
δ	depreciation rate (annually)	7.1 percnet	
$(c_e-c_u)/c_e$	st.st. cons. drop upon unempl.	12 percent	


Estimated Parameters - Preliminary

Parameter	Meaning	Estimate	
$\overline{\phi}$	price adj. cost	401	
χ	real wage elasticity	0.04	
$ ho_{\mathcal{A}}$	persistence of TFP shocks	0.99	
δ_Π	interest rate resp. to infl.	1.32	
ψ	impact of noise on mon.pol.	0.004	
β	implied disc. factor (annually)	0.870	
Θ^{F}	implied risk wedge	0.0026 > 0	
ξ	average price contract length	7.82 months	


Estimated Parameters - Preliminary

Parameter	Meaning	Estimate	
σ_T	std., transitory TFP shock	0.50 percent	
σ_P	std., innov. to perst. TFP	0.05 percent	
$\sigma_{\mathcal{S}}$	std., sentiment shock	0.19 percent	
hocı	confidence persistence	0.960	
$artheta_1$	confidence parameter	1.019	
ϑ_2	confidence parameter	7.968	
σ_{CI}	measurement error, confidence	0.15 percent	
σ_{m_2}	measurement error, proxy	1.6 percent	


Matched VAR IRFs - Preliminary

True Model IRFS - Preliminary

True Model IRFS

Model FEVD

Contribution to Business Cycles: Forecast error variance decomposition

	Variable						
Horizon	ICE	ΙP	U	CPI	FFR	TIGHT	V
1	30	0.7	19	34	0.3	18	18
3	18	1.3	16	28	0.6	9.3	8.2
6	10	8.4	12	19	8.0	2.7	2.9
12	2.5	0.7	4.2	5.7	1.1	0.7	1.0
24	0.7	0.2	8.0	1.2	0.7	0.2	0.3
48	0.2	0.1	0.2	0.3	0.3	0.1	0.1

Key contributions:

• Proposed dynamic causal estimation of consumer sentiment shocks

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market
- Interaction with monetary policy

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market
- Interaction with monetary policy
- Proposed HANK&SAM model with imperfect information to account for this

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market
- Interaction with monetary policy
- Proposed HANK&SAM model with imperfect information to account for this
- Find countercyclical risk wedge to be important

ICE is derived from answers to three questions (each given 1-5 score):

PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"

- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole—do you think that during the next 12 months we'll have good times financially, or bad times, or what?"

- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "..which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"

- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole—do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "...which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"
 - Responses tend to be bimodal (either 1 or 5).

- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "...which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"
 - Responses tend to be bimodal (either 1 or 5).
 - ICE = 100 + "% positive respondents" "% negative respondents" (normalized to 1966 base).

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

• How can one isolate the expectational/non-fundamental component?

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$\begin{aligned} \mathbf{X}_t &= \left[\begin{array}{c} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{array} \right] \\ \mathbf{X}_t &= \mathbf{A} \left(L \right) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$\mathbf{X}_t = \left[egin{array}{c} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{array}
ight] \ \mathbf{X}_t = \mathbf{A} \left(L
ight) \mathbf{X}_{t-1} + \mathbf{u}_t \ \end{array}$$

Look at response to innovation to CI_t.

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$\begin{aligned} \mathbf{X}_t &= \left[\begin{array}{c} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{array} \right] \\ \mathbf{X}_t &= \mathbf{A} \left(L \right) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

- Look at response to innovation to CI_t.
- Do not claim causality

• Confidence innovation predicts future income and consumption growth.

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} a_t &= a_{t-1} + g_{t-1} + \varepsilon_{a,t} \\ g_t &= (1 - \rho_a) g^* + \rho_a g_{t-1} + \varepsilon_{g,t} \end{aligned}$$

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} a_t &= a_{t-1} + g_{t-1} + \varepsilon_{a,t} \\ g_t &= (1 - \rho_a) g^* + \rho_a g_{t-1} + \varepsilon_{g,t} \end{aligned}$$

• $\varepsilon_{a,t}$: Technology shocks.

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} a_t &= a_{t-1} + g_{t-1} + \varepsilon_{a,t} \\ g_t &= (1 - \rho_a) g^* + \rho_a g_{t-1} + \varepsilon_{g,t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} a_t &= a_{t-1} + g_{t-1} + \varepsilon_{a,t} \\ g_t &= (1 - \rho_a) g^* + \rho_a g_{t-1} + \varepsilon_{g,t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

$$s_t = g_t + \varepsilon_{s,t}$$

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} a_t &= a_{t-1} + g_{t-1} + \varepsilon_{a,t} \\ g_t &= (1 - \rho_a) g^* + \rho_a g_{t-1} + \varepsilon_{g,t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

$$s_t = g_t + \varepsilon_{s,t}$$

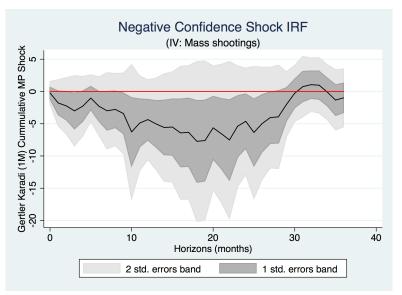
• $\varepsilon_{s,t}$: Sentiments/animal spirits (pure expectational shocks).

Barsky and Sims: Construct NK model with imperfect information.

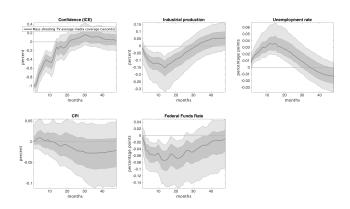
TFP follows:

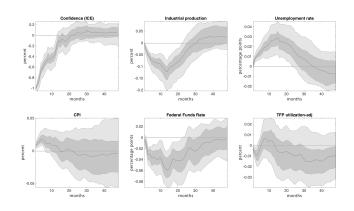
$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{a},t} \\ \mathbf{g}_t &= \left(1 - \rho_{\mathsf{a}}\right) \mathbf{g}^* + \rho_{\mathsf{a}} \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{g},t} \end{aligned}$$

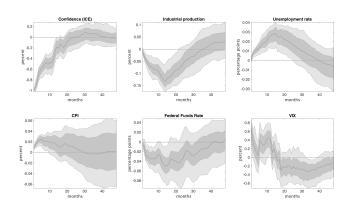
- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

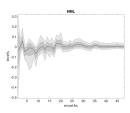

$$s_t = g_t + \varepsilon_{s,t}$$

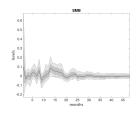
- $\varepsilon_{s,t}$: Sentiments/animal spirits (pure expectational shocks).
- Barsky-Sims model-equivalent of **CI**_t is:

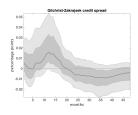

$$\mathbf{CI}_{t} = \zeta_{1}\left(a_{t} - a_{t-1} - g_{t|t-1}\right) + \zeta_{2}\left(g_{t|t} - \rho_{a}g_{t|t-1}\right) + \zeta_{2}\varepsilon_{c,t}$$

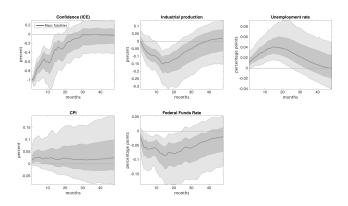

Impact on Gertler-Karadi MP Shock

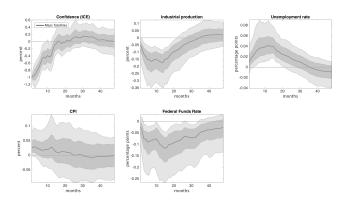

Alternative IV

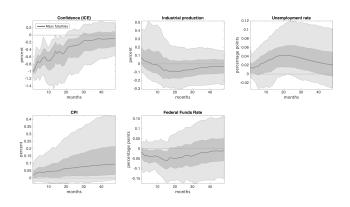

Cholseky TFP

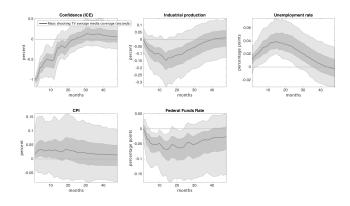



Cholseky VIX


Other stock market variables




No detrending of mass fatalities


Before the Great Recession

Whole Sample

Whole Sample Alternative IV with TV coverage

