Monetary Policy, Corporate Finance \& Investment

James Cloyne (UC Davis, NBER \& CEPR)
Clodo Ferreira (Bank of Spain)
Maren Froemel (LBS \& BoE)
Paolo Surico (LBS \& BoE)

March 2019

The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Spain, the Euro-system, Bank of England, MPC, FPC or PRA. This research has been funded by the European Research Council.

Monetary Policy and Firm Finance

- How does monetary policy affect firm investment? Which type of firms are most responsive?
- How do firms' balance sheets respond?
- How important are financial frictions?

Our Approach

■ Firm-level panel approach for the US and UK

- Heterogeneity in the dynamic effects of policy across firms.
- Micro data with macro identification of policy rate changes.

Our Approach

- Firm-level panel approach for the US and UK
- Heterogeneity in the dynamic effects of policy across firms.
- Micro data with macro identification of policy rate changes.
- Which firms change investment the most?
- Which proxies for financial constraints should we focus on?
- Age, size, growth, leverage, liquidity, dividend status, Q
- Multivariate heterogeneity analysis.

Our Approach

\square Firm-level panel approach for the US and UK

- Heterogeneity in the dynamic effects of policy across firms.
- Micro data with macro identification of policy rate changes.
- Which firms change investment the most?
- Which proxies for financial constraints should we focus on?
- Age, size, growth, leverage, liquidity, dividend status, Q
- Multivariate heterogeneity analysis.
- What happens to these firms' balance sheets?
- Borrowing, equity, earnings/cash flows, share prices.

Our Approach

\square Firm-level panel approach for the US and UK

- Heterogeneity in the dynamic effects of policy across firms.
- Micro data with macro identification of policy rate changes.
- Which firms change investment the most?
- Which proxies for financial constraints should we focus on?
- Age, size, growth, leverage, liquidity, dividend status, Q
- Multivariate heterogeneity analysis.

■ What happens to these firms' balance sheets?

- Borrowing, equity, earnings/cash flows, share prices.
- Heterogeneity used to examine the transmission mechanism.

Main Findings

- Investment

1. Age is a robust predictor: Younger firms respond the most. Quantitatively important to account for the aggregate response.
2. Especially pronounced for firms not paying dividends.
3. Robust to controlling for more traditional characteristics.

Main Findings

- Investment

1. Age is a robust predictor: Younger firms respond the most. Quantitatively important to account for the aggregate response.
2. Especially pronounced for firms not paying dividends.
3. Robust to controlling for more traditional characteristics.

- Firm Finance

4. Younger firms: lower earnings, lower credit scores and leverage. Less likely to pay dividends. Borrowing is more asset-based.
5. After a contractionary monetary policy, net worth falls for all firms. But borrowing falls the most for younger firms paying no dividends.

Main Findings

- Investment

1. Age is a robust predictor: Younger firms respond the most. Quantitatively important to account for the aggregate response.
2. Especially pronounced for firms not paying dividends.
3. Robust to controlling for more traditional characteristics.

- Firm Finance

4. Younger firms: lower earnings, lower credit scores and leverage. Less likely to pay dividends. Borrowing is more asset-based.
5. After a contractionary monetary policy, net worth falls for all firms. But borrowing falls the most for younger firms paying no dividends.

■ Interpretation of the evidence/channel: higher interest rates-> \rightarrow lower asset values \rightarrow borrowing falls \rightarrow investment falls.

Literature

Empirics...

- Age \& employment (Haltiwanger et al., 2013, Bahaj et al., 2018)
- Age, size, leverage \& business cycles
(Dinlersoz et al., 2018, Crouzet \& Mehrotra 2018)
- Firm Finance \& business cycles
(Covas \& den Haan, 2011, Begenau \& Salomao, 2018)
- Investment \& financial frictions (Fazzari et al. 1988, Gertler \& Gilchrist 1994, Ottonello \& Winberry 2018, Jeenas, 2018)
- Firm borrowing constraints (Lian \& Ma, 2018, Drechsel, 2018)

Financial frictions...

- Age \& growth prospects (Cooley-Quadrini, 2001, Cooper et al. 2006)
- Leverage, asset prices/collateral values \& monetary policy (Bernanke, Gertler \& Gilchrist, 1999, Kiyotaki \& Moore, 1997, etc.)

Outline

Data \& Approach

Age as a Proxy for Financial Constraints

Heterogeneity in the Response of Investment

Firm Finance and Balance Sheet Response

Concluding remarks

Firm Data: Panel of Public Firms

- Compustat quarterly panel (US). Worldscope annual panel (UK). Sample period: 1986-2016.
- Also make use of corporate bonds and asset price data (CRSP and Thomson Reuters)
- Key variables of interest:
- Investment: capital expenditure/net PPE.
- Age: Worldscope years since incorporation.
- Other variables: assets, debt, leverage (debt/assets), liquidity, Tobin's Q, equity, share prices, earnings/sales, dividends paid, interest payments.

Monetary Policy: Identification

- Gertler-Karadi approach: High frequency surprises in short rate futures around policy announcements.
- Instrument available since 2001 for the U.K. (Gerko-Rey) and 1991 for the U.S. (Gertler-Karadi).
- Gertler-Karadi (2015)/Mertens-Ravn (2013): surprises as proxies for structural shocks in the Vector Autoregression.
- Identifies a series of monetary policy shocks for the full sample.

Empirical Specification

$$
\Delta_{h} X_{i, t+h}=\gamma_{i}^{h}+\sum_{g=1}^{G} \beta_{g}^{h} \cdot \mathrm{I}\left[Z_{i, t-1} \in g\right] \cdot R_{t}+\sum_{g=1}^{G} \alpha_{g}^{h} \cdot \mathrm{I}\left[Z_{i, t-1} \in g\right]+\epsilon_{i, t+h}
$$

- Baseline $X_{i, t+h}$: capex/net PPE at horizon h. Also look at equity, borrowing, earnings, share prices etc.
- $Z_{i, t-1}$: variable defining a group: age, size, growth, leverage, beta, paying dividends in previous year. Could be multivariate.
- R_{t} : interest rate in GK/GR instrumented with structural shocks.

Sense Check: The Average Effect

United States

United Kingdom

Response of the investment ratio to a 25 basis point increase in interest rates. Confidence bands 90%. Firm-time clustering.

Consistent with MACRO EVIDENCE using data from national statistics. IRFs even more similar when reporting at the same

Outline

Data \& Approach

Age as a Proxy for Financial Constraints

Heterogeneity in the Response of Investment

Firm Finance and Balance Sheet Response

Concluding remarks

Size, Growth and Earnings by AGE

Younger firms are smaller, have lower cash-flows but grow faster

Regressions of the variable of interest on age, squared age, sectorsXtime fixed effects (and size).

Financial Characteristics by AGE

Younger firms: lower credit scores/less likely to pay dividends.

Credit scores

Dividends \& Bonds

Leverage and Liquidity by AGE

Younger firms are less leveraged/hold more liquid assets

Summary: What Does Age Capture?

Younger firms tend to:

- be smaller
- have lower earnings
- have lower
- credit scores
- probability of paying dividends

But younger firms also have:

- lower leverage and higher liquid assets
- faster growth and higher (average) Tobin's Q

Outline

Data \& Approach

Age as a Proxy for Financial Constraints

Heterogeneity in the Response of Investment

Firm Finance and Balance Sheet Response

Concluding remarks

Response of Investment by AGE

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

Investment Response by AGE \& DIVIDENDS: U.S.

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

Investment Response by AGE \& DIVIDENDS: U.K.

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

YOUNGER Firms Drive the Average Effect

	Younger			Older	
	No Div	Paid Div		No Div	Paid Div
U.S.	75.5%	6.7%		13.0%	4.8%
	$[68.1,82.8]$	$[-1.6,15.5]$		$[11.7,14.5]$	$[1.9,7.4]$
U.K.	83.6%	13.1%		2.9%	0.4%
	$[70.4,96.8]$	$[2.9,23.2]$		$[-2.2,8.1]$	$[-5.9,6.9]$

Notes: 95% Cl in square brackets

Multidimensional Heterogeneity Analysis

Age is correlated with a range of other factors. Do our IRFs simply capture one of these other factors? No.

Results are robust to conditioning on:

1. Size charis
2. Leverage charts
3. Liquidity charis
4. Firm growth charts and Tobin's Q

- charts

5. Risk see secilion 7.2 in the paper

Outline

Data \& Approach

Age as a Proxy for Financial Constraints

Heterogeneity in the Response of Investment

Firm Finance and Balance Sheet Response

Concluding remarks

BORROWING responds most for Younger/No Div.

Younger \& NO dividends

Older \& Paying dividends

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

- Muted, more homogeneous and less persistent response of interest payments

Borrowing: Asset vs. Earning-Based

$$
\Delta B_{i, t}=\sum_{g=1}^{G} \beta_{1, g} \cdot \mathrm{I}\left[Z_{i, t-1} \in g\right] \cdot \text { COLL }_{i, t-1}+\sum_{g=1}^{G} \beta_{2, g} \cdot \mathrm{I}\left[Z_{i, t-1} \in g\right] \cdot \text { EBITDA }_{i, t-1}+X_{i, t}^{\prime} \gamma+\epsilon_{i, t}
$$

	U.K. Young / No Div Old / Div	U.S. Young / No Div Old / Div
COLLATERAL		
EBITDA		

Dependent variable: Δ long-term debt

Note: regressions include time-sector, group and firm fixed effects, plus a range of other lagged firms' characteristics as controls. Standard errors are clustered by time and firm.

Borrowing: Asset vs. Earning-Based

$$
\Delta B_{i, t}=\sum_{g=1}^{G} \beta_{1, g} \cdot \mathrm{I}\left[Z_{i, t-1} \in g\right] \cdot C O L L_{i, t-1}+\sum_{g=1}^{G} \beta_{2, g} \cdot \mathrm{I}\left[Z_{i, t-1} \in g\right] \cdot E B I T D A_{i, t-1}+X_{i, t}^{\prime} \gamma+\epsilon_{i, t}
$$

COLLATERAL	U.K. Young / No Div	Old / Div	U.S. Young / No Div	Old / Div
	0.025***	0.012		
	(0.009)	(0.009)		
EBITDA	-0.013	0.069***		
	(0.011)	(0.019)		
Dependent variable: Δ long-term debt				

Note: regressions include time-sector, group and firm fixed effects, plus a range of other lagged firms' characteristics as controls. Standard errors are clustered by time and firm.

Borrowing: Asset vs. Earning-Based

$$
\Delta B_{i, t}=\sum_{g=1}^{G} \beta_{1, g} \cdot \mathrm{I}\left[Z_{i, t-1} \in g\right] \cdot \operatorname{COLL} L_{i, t-1}+\sum_{g=1}^{G} \beta_{2, g} \mathrm{I}\left[Z_{i, t-1} \in g\right] \cdot E B I T D A_{i, t-1}+X_{i, t}^{\prime}+\epsilon \epsilon_{i, t}
$$

COLLATERAL	Houng / No Div. $\begin{array}{r}\text { U.K. }\end{array}$		U.S.	
	Young / No Div	$\frac{\mathrm{Old} / \mathrm{Div}}{0.012}$	Young / No Div	Old / Div
	$0.025^{* * *}$	0.012	$0.063^{* * *}$	0.038**
	(0.009)	(0.009)	(0.013)	(0.014)
EBITDA	-0.013	0.069***	0.007	0.048**
	(0.011)	(0.019)	(0.016)	(0.018)
Dependent variable: Δ long-term debt				

Note: regressions include time-sector, group and firm fixed effects, plus a range of other lagged firms' characteristics as controls. Standard errors are clustered by time and firm.

EQUITY (MKT. VALUE) falls

Younger \& NO dividends

E 0 0 0 0 0 0 0

Older \& Paying dividends

Response of EARNINGS

Younger \& NO dividends

United Kingdom

Transmission Mechanism

To recap:

- Net worth falls for all groups.
- Borrowing of younger-no dividend firms is more correlated with asset values than with earnings.
- Borrowing only significantly falls for these firms.

Other channels?

1. Demand
2. Growth and profitability
3. Liquidity
4. Risk

Sensitivity analysis

Results are robust to

- survival bias
- information effect
- sectoral heterogeneity
- ending the sample in 2007

Our contribution: Five New Findings...

1. Younger firms respond more than any other group and drive the aggregate response of investment to interest rate changes
2. Results are more pronounced for young firms paying no dividends and robust to controlling for other firm characteristics

Our contribution: Five New Findings...

1. Younger firms respond more than any other group and drive the aggregate response of investment to interest rate changes
2. Results are more pronounced for young firms paying no dividends and robust to controlling for other firm characteristics
3. Younger firms' borrowing is more asset-based (than earning-based)
4. Net worth and share prices move for all firms
5. Borrowing responds most for younger firms.

...and AN INTERPRETATION

- Younger firms tend to borrow against the value of their assets to fund capital expenditure.
- Rate increases push down asset prices and collateral values.
- Borrowing constraints tighten: borrowing and investment falls.
- Younger firms account for a sizable part of the aggregate response of investment.

Young firms face financial frictions. Fluctuations in collateral and asset values can play a key role in the MTM.

Extra Slides

Monetary Policy Surprises and Shocks

High-frequency Surprises

Policy Shocks

Investment: National Statistics vs Micro data

Levels

ε
0
0
0
0
0
0
0
0

Growth rates

The response of aggregate investment

Monetary Policy shock: 25 basis point increase. Bootstrapped Standard errors.

The response of aggregate investment

United Kingdom

Interest rate

United States

Monetary Policy shock: 25 basis point increase. Bootstrapped Standard errors.

The response of selected macro variables

Monetary Policy shock: 25 basis point increase. Bootstrapped Standard errors.

[^0]
The U.S. average effect reported at annual frequency

United States

United Kingdom

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

- Back to average effect

Investment responses by PAYING DIVIDENDS

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

Investment response by SIZE

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90\%.

‘Controlling’ for (SMALLER) size

NO dividends \& Younger

E
0
0
0
0
0
0
0

PAY dividends \& Older

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

[^1]
Investment response by ASSET GROWTH

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

‘Controlling’ for (FASTER) asset growth

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

Investment response by LEVERAGE

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

‘Controlling’ for (LOWER) leverage

NO dividends \& Younger

PAY dividends \& Older

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

Investment response by LIQUIDITY

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90\%.

‘Controlling’ for (HIGHER) liquidity

NO dividends \& Younger

PAY dividends \& Older

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90\%.

Investment response by TOBIN'S Q

Higher

8
0
0
0
0
0
0
0

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

‘Controlling’ for (HIGHER) Tobin’s Q

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

US Investment Response by BETA and ALPHA

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90\%.

‘Controlling’ for (HIGH) Alpha/Beta (US)

NO dividends \& Younger PAY dividends \& Older

$\mathscr{0}$
0
0
$\widetilde{8}$
$\frac{\pi}{2}$

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

- Back to robustness summary - Back to mechanism

Firms Who Grow Old

Young \& NO dividends

Old \& Paying dividends

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

More homogeneous INTEREST PAYMENTS response

Younger \& NO dividends

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

SHARE PRICE falls

Younger \& NO dividends

Older \& Paying dividends

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.

Response of EBITDA

Younger \& NO dividends

United Kingdom

Older \& Paying dividends

25 basis point increase in interest rates. Standard errors clustering by firm and time. Confidence band: 90%.

[^0]: Back to average effect

[^1]: - Back to robustness summary

