Empirical network contagion for U.S. financial institutions by Duarte & Jones Discussion by

Iñaki Aldasoro¹

¹Bank for International Settlements

February 6, 2020

ECB Macroprudential Stress-testing Conference, Frankfurt Disclaimer: The views presented are mine and do not necessarily represent those of the Bank for International Settlements

Once a upon a time, there was a clearing algorithm

Contagion, contagion, contagion!

Contagion is dead

Contagion is dead, long live contagion!

Theoretical grounding

- Contagion via *direct* links; no fire sales, no info contagion, runs, liquidity risk); defaults cascades (Eisenberg & Noe '01 and offspring)
- Bounds on network contagion (Glasserman & Young '15)
 - "Network spillovers"

Empirical paper

- Take result on bound and run with it
- Very thorough empirical application
 - Multiple institutions, multiple financial sectors
 - Good menu of robustness

A simple key message

Theoretical grounding

- Contagion via *direct* links; no fire sales, no info contagion, runs, liquidity risk); defaults cascades (Eisenberg & Noe '01 and offspring)
- Bounds on network contagion (Glasserman & Young '15)
 - "Network spillovers"

Empirical paper

- Take result on bound and run with it
- Very thorough empirical application
 - Multiple institutions, multiple financial sectors
 - Good menu of robustness

A simple key message

Theoretical grounding

- Contagion via *direct* links; no fire sales, no info contagion, runs, liquidity risk); defaults cascades (Eisenberg & Noe '01 and offspring)
- Bounds on network contagion (Glasserman & Young '15)
 - "Network spillovers"

Empirical paper

- Take result on bound and run with it
- Very thorough empirical application
 - Multiple institutions, multiple financial sectors
 - Good menu of robustness

A simple key message

Theoretical grounding

- Contagion via *direct* links; no fire sales, no info contagion, runs, liquidity risk); defaults cascades (Eisenberg & Noe '01 and offspring)
- Bounds on network contagion (Glasserman & Young '15)
 - "Network spillovers"

Empirical paper

- Take result on bound and run with it
- Very thorough empirical application
 - Multiple institutions, multiple financial sectors
 - Good menu of robustness

A simple key message

Theoretical grounding

- Contagion via *direct* links; no fire sales, no info contagion, runs, liquidity risk); defaults cascades (Eisenberg & Noe '01 and offspring)
- Bounds on network contagion (Glasserman & Young '15)
 - "Network spillovers"

Empirical paper

- Take result on bound and run with it
- Very thorough empirical application
 - Multiple institutions, multiple financial sectors
 - Good menu of robustness

A simple key message

Theoretical grounding

- Contagion via *direct* links; no fire sales, no info contagion, runs, liquidity risk); defaults cascades (Eisenberg & Noe '01 and offspring)
- Bounds on network contagion (Glasserman & Young '15)
 - "Network spillovers"

Empirical paper

- Take result on bound and run with it
- Very *thorough* empirical application
 - Multiple institutions, multiple financial sectors
 - Good menu of robustness

A simple key message

Theoretical grounding

- Contagion via *direct* links; no fire sales, no info contagion, runs, liquidity risk); defaults cascades (Eisenberg & Noe '01 and offspring)
- Bounds on network contagion (Glasserman & Young '15)
 - "Network spillovers"

Empirical paper

- Take result on bound and run with it
- Very *thorough* empirical application
 - Multiple institutions, multiple financial sectors
 - Good menu of robustness

A simple key message

- Originally developed as clearing algorithm to determine payment vector between *banks*
- Captures *default* contagion
- Banking network as *mutualisation* scheme
 - Final equity loss is equal to initial loss to outside assets
 - "the financial system is conservative, neither creating nor destroying value, the value in a surplus set must be allocated somewhere"
 - ► No amplification

- Originally developed as clearing algorithm to determine payment vector between *banks*
- Captures *default* contagion
- Banking network as *mutualisation* scheme
 - Final equity loss is equal to initial loss to outside assets
 - "the financial system is conservative, neither creating nor destroying value, the value in a surplus set must be allocated somewhere"
 - ► No amplification

- Originally developed as clearing algorithm to determine payment vector between *banks*
- Captures *default* contagion
- Banking network as *mutualisation* scheme
 - ▶ Final equity loss is equal to initial loss to outside assets
 - "the financial system is conservative, neither creating nor destroying value, the value in a surplus set must be allocated somewhere"
 - ► No amplification

- Originally developed as clearing algorithm to determine payment vector between *banks*
- Captures *default* contagion
- Banking network as *mutualisation* scheme
 - Final equity loss is equal to initial loss to outside assets
 - "the financial system is conservative, neither creating nor destroying value, the value in a surplus set must be allocated somewhere"
 - ► No amplification

- Originally developed as clearing algorithm to determine payment vector between *banks*
- Captures *default* contagion
- Banking network as *mutualisation* scheme
 - Final equity loss is equal to initial loss to outside assets
 - "the financial system is conservative, neither creating nor destroying value, the value in a surplus set must be allocated somewhere"
 - ► No amplification

- Originally developed as clearing algorithm to determine payment vector between *banks*
- Captures *default* contagion
- Banking network as *mutualisation* scheme
 - Final equity loss is equal to initial loss to outside assets
 - "the financial system is conservative, neither creating nor destroying value, the value in a surplus set must be allocated somewhere"
 - No amplification

How likely is contagion in financial networks? (GY)

► A network paper ...

How likely is contagion in financial networks? (GY)

A network paper ... without a network

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- ► *R* has upper bound *B*
 - Combine (outside) asset-weighted PD and maximum inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- ► *R* has upper bound *B*
 - Combine (outside) asset-weighted PD and *maximum* inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- R has upper bound B
 - Combine (outside) asset-weighted PD and maximum inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- R has upper bound B
 - Combine (outside) asset-weighted PD and maximum inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- R has upper bound B
 - Combine (outside) asset-weighted PD and maximum inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- R has upper bound B
 - Combine (outside) asset-weighted PD and maximum inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- R has upper bound B
 - Combine (outside) asset-weighted PD and maximum inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

- Network spillovers: difference between actual and hypothetical (connections disappear but balance sheets remain the same)
- R has upper bound B
 - Combine (outside) asset-weighted PD and maximum inter-financial liability share
 - Express it as Network Vulnerability Index (NVI = B 1)
- ► How meaningful is the counterfactual E(L_{disc})? Need to defend this!
- \blacktriangleright Most variability driven by PD, so time series pattern of NVI \approx PD
 - Why not just use PDs?
 - It has to be because the level of NVI matters (more later)

Empirics

Locational or consolidated? (eg banks in the US vs US banks)

What role for foreign banks and their US operations?

- Large literature documenting how important they can be in granting credit, intermediating derivatives and repos, etc
- BHCs: with or without BD subsidiaries? (some double counting?)
 - FR Y-9C: can distinguish between CBs, UBs with and without BD subsidiaries (*rssd*9346, *bhckc*252)

Empirics

Locational or consolidated? (eg banks in the US vs US banks)

What role for foreign banks and their US operations?

- Large literature documenting how important they can be in granting credit, intermediating derivatives and repos, etc
- BHCs: with or without BD subsidiaries? (some double counting?)
 - FR Y-9C: can distinguish between CBs, UBs with and without BD subsidiaries (*rssd*9346, *bhckc*252)

Empirics

Locational or consolidated? (eg banks in the US vs US banks)

- What role for foreign banks and their US operations?
 - Large literature documenting how important they can be in granting credit, intermediating derivatives and repos, etc
- BHCs: with or without BD subsidiaries? (some double counting?)
 - ► FR Y-9C: can distinguish between CBs, UBs with and without BD subsidiaries (*rssd*9346, *bhckc*252)

Empirics (cont.)

PDs on the driving seat

- Strange patterns for connectivity
 - Reclassification of IBs as BHCs
- ► More broadly: mixing a lot of different entities and coming up with a single β⁺ (maximum intrafinancial liability share)
 - Apples and oranges? Need to discuss contagion mechanisms!
 - "More is different", eg do shocks transmit the same way in the traditional – EN, GY – pure interbank setting vs interdealer vs dealer-REIT-IC-BHC vs ...)

Empirics (cont.)

- PDs on the driving seat
- Strange patterns for connectivity
 - Reclassification of IBs as BHCs
- ► More broadly: mixing a lot of different entities and coming up with a single β⁺ (maximum intrafinancial liability share)
 - Apples and oranges? Need to discuss contagion mechanisms!
 - "More is different", eg do shocks transmit the same way in the traditional – EN, GY – pure interbank setting vs interdealer vs dealer-REIT-IC-BHC vs ...)

Empirics (cont.)

- PDs on the driving seat
- Strange patterns for connectivity
 - Reclassification of IBs as BHCs
- ► More broadly: mixing a lot of different entities and coming up with a single β⁺ (maximum intrafinancial liability share)
 - Apples and oranges? Need to discuss contagion mechanisms!
 - "More is different", eg do shocks transmit the same way in the traditional – EN, GY – pure interbank setting vs interdealer vs dealer-REIT-IC-BHC vs ...)

Passing judgment

- I really liked the paper, you should read it!
- Powerful (and straightforward) message
- Nicely done, very thorough empirical application
- More robustness than I could think of

- Blockchain *could/may* fix cross-border payments, digital IDs, remittances, poverty, water supply, *<insert random stuff>*
 - But again, it could/may not
- Network spillovers could be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain could/may fix cross-border payments, digital IDs, remittances, poverty, water supply, <insert random stuff>
 - But again, it could/may not
- Network spillovers could be large
 - But again, they *could not*
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain *could/may* fix cross-border payments, digital IDs, remittances, poverty, water supply, *<insert random stuff>*
 - But again, it could/may not
- Network spillovers could be large
 - But again, they *could not*
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain *could/may* fix cross-border payments, digital IDs, remittances, poverty, water supply, *<insert random stuff>*
 - But again, it could/may not
- Network spillovers *could* be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain *could/may* fix cross-border payments, digital IDs, remittances, poverty, water supply, *<insert random stuff>*
 - But again, it could/may not
- Network spillovers could be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain *could/may* fix cross-border payments, digital IDs, remittances, poverty, water supply, *<insert random stuff>*
 - But again, it could/may not
- Network spillovers *could* be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain *could/may* fix cross-border payments, digital IDs, remittances, poverty, water supply, *<insert random stuff>*
 - But again, it could/may not
- Network spillovers could be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain could/may fix cross-border payments, digital IDs, remittances, poverty, water supply, <insert random stuff>
 - But again, it could/may not
- Network spillovers could be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain could/may fix cross-border payments, digital IDs, remittances, poverty, water supply, <insert random stuff>
 - But again, it could/may not
- Network spillovers could be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

- Blockchain could/may fix cross-border payments, digital IDs, remittances, poverty, water supply, <insert random stuff>
 - But again, it could/may not
- Network spillovers could be large
 - But again, they could not
 - Meaningfulness of bound is a decreasing function of its size
- "In theory, there is no difference between theory and practice. In practice, there is."
 - Bounds are a useful theoretical result
 - Implications for policy? For stress-testing?
 - Can we pin down more accurately the extent of contagion?

THANK YOU FOR YOUR ATTENTION!

 \bowtie inaki.aldasoro@bis.org