Price Selection in the Microdata

 $\hbox{Peter Karadi}^{1,4} \quad \hbox{Raphael Schoenle}^{2,4} \quad \hbox{Jesse Wursten}^3$

 1 European Central Bank 2 Brandeis University 3 KU Leuven 4 CEPR

September 2022

The views expressed here are solely those of the authors and do not necessarily reflect the views of the Cleveland Fed, the ECB or the Eurosystem

- ► Rigidity of the price level influences
 - ► Real effects of monetary policy
 - Amplification through 'demand' channels

- ► Rigidity of the price level influences
 - Real effects of monetary policy
 - Amplification through 'demand' channels
- ▶ Prices change infrequently (Bils and Klenow, 2004)

- Rigidity of the price level influences
 - ► Real effects of monetary policy
 - Amplification through 'demand' channels
- ▶ Prices change infrequently (Bils and Klenow, 2004)
- ▶ In standard price-setting models (Calvo, 1983)
 - ► Low frequency implies rigid price level

- ► Rigidity of the price level influences
 - ► Real effects of monetary policy
 - ► Amplification through 'demand' channels
- Prices change infrequently (Bils and Klenow, 2004)
- ▶ In standard price-setting models (Calvo, 1983)
 - ▶ Low frequency implies rigid price level
- ▶ In models microfounded by fixed (menu) costs of adjustment (Golosov and Lucas, 2007)
 - ▶ Price level stays flexible even if a small fraction adjusts, because
 - ► Large price changes are selected

Selection of large price changes

▶ Why are large price changes selected?

Selection of large price changes

- ▶ Why are large price changes selected?
- ▶ Menu costs: optimal to concentrate on the products with the largest price misalignment

Selection of large price changes

- Why are large price changes selected?
- ▶ Menu costs: optimal to concentrate on the products with the largest price misalignment
- When an aggregate shock hits
 - ▶ The most misaligned prices get adjusted,
 - ► They change by a lot, and
 - ▶ This raises the flexibility of the price level.

What do we do and find?

► Revisit the Golosov and Lucas (2007)-critique to price-rigidity

What do we do and find?

- ▶ Revisit the Golosov and Lucas (2007)-critique to price-rigidity
- ▶ By measuring the strength of the selection effect using microdata

What do we do and find?

- ▶ Revisit the Golosov and Lucas (2007)-critique to price-rigidity
- ▶ By measuring the strength of the selection effect using microdata
- ▶ We measure price misalignment and identify aggregate shocks to show
 - 1. State-dependence: Probability of price adjustment increases with price misalignment unconditionally
 - 2. No selection: conditional on an aggregate shock, misalignment is immaterial
 - 3. Active gross extensive margin: Uniform shift between price increases versus price decreases

What do we do and find?

- ▶ Revisit the Golosov and Lucas (2007)-critique to price-rigidity
- ▶ By measuring the strength of the selection effect using microdata
- ▶ We measure price misalignment and identify aggregate shocks to show
 - 1. State-dependence: Probability of price adjustment increases with price misalignment unconditionally
 - 2. No selection: conditional on an aggregate shock, misalignment is immaterial
 - 3. Active gross extensive margin: Uniform shift between price increases versus price decreases
- ▶ Provides guidance for model choice and policy implications
 - ► Consistent with mildly state-dependent models with linear and flat price-adjustment hazard and sizable monetary non-neutrality

Plan of talk

- Framework
- ► US supermarket data (IRi) (robust to PPI)
- Price-gap proxy: competitor's-price-gap (robust to competitors'-reset-price and reset-price gaps)
- Aggregate credit shock (robust to monetary policy shock)
- Selection
- Robustness
- Selected literature

Conceptual framework (extending Caballero and Engel, 2007)

▶ Identify channels of adjustment of the price level to an aggregate shock in an environment with sticky prices

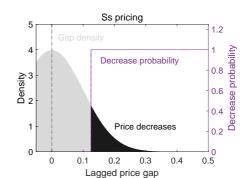
Conceptual framework (extending Caballero and Engel, 2007)

- ▶ Identify channels of adjustment of the price level to an aggregate shock in an environment with sticky prices
- Caballero and Engel (2007): two channels
 - ▶ Intensive margin: larger adjustment; only channel in time-dependent
 - ▶ Extensive margin: new adjusters; new channel in state dependent

Conceptual framework (extending Caballero and Engel, 2007)

- ▶ Identify channels of adjustment of the price level to an aggregate shock in an environment with sticky prices
- ► Caballero and Engel (2007): two channels
 - ▶ Intensive margin: larger adjustment; only channel in time-dependent
 - ▶ Extensive margin: new adjusters; new channel in state dependent
- Our contribution: generalize Caballero and Engel (2007)
 - Separate extensive margin into two channels
 - Gross extensive margin: shift between price increases vs decreases
 - ► Selection: large gaps adjust with higher probability, conditional on shock

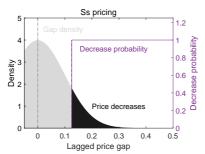
Conceptual framework (extending Caballero and Engel, 2007)

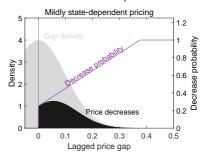

- ► Identify channels of adjustment of the price level to an aggregate shock in an environment with sticky prices
- Caballero and Engel (2007): two channels
 - ▶ Intensive margin: larger adjustment; only channel in time-dependent
 - ▶ Extensive margin: new adjusters; new channel in state dependent
- Our contribution: generalize Caballero and Engel (2007)
 - ► Separate extensive margin into two channels
 - ▶ Gross extensive margin: shift between price increases vs decreases
 - ▶ Selection: large gaps adjust with higher probability, conditional on shock
- ightharpoonup Sufficient to concentrate on the impact effect (dynamics \sim same, Auclert et al., 2022)

Conceptual framework (extending Caballero and Engel, 2007)

- Price adjustment frictions: lumpy price adjustment
- Price gap $x_{it} = p_{it} p_{it}^*$
 - $ightharpoonup p_{it}$ (log) price of product i: adjusts occasionally
 - $ightharpoonup p_{it}^*$ (log) optimal price: influenced continuously by both product-level and aggregate factors
- Inflation decomposition

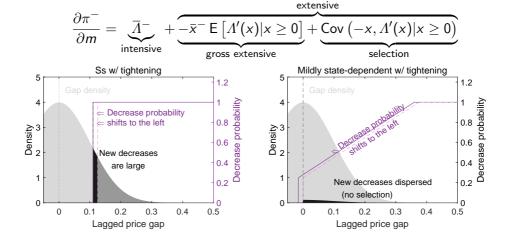
$$\pi = \int -x \Lambda(x) f(x) dx$$


▶ π : inflation; f(x) density; $\Lambda(x)$ hazard; -x: desired change (-gap)



State dependence (extending Caballero and Engel, 2007)

- ▶ Concentrate on π^- : inflation from positive gaps $(\pi^+$ analogous, $\pi = \pi^- + \pi^+)$
- ▶ Focus: shape of the adjustment hazard $\Lambda(x)$.
- ▶ Steep hazard: price changes are large unconditionally (state-dependence, not selection)


$$\pi^- = \int_{x \ge 0} -x \Lambda(x) f(x) dx = -\bar{x}^- \bar{\Lambda}^- + \underbrace{\operatorname{Cov}(-x, \Lambda(x) | x \ge 0)}_{\text{state-dependence}},$$

Selection (extending Caballero and Engel, 2007)

- ▶ Selection: position of new adjusters conditional on a permanent shock *m*
- Gross extensive: mass of new adjusters (shift from increases to decreases)

Conceptual framework (Caballero and Engel, 2007)

Overview

	Time- (S,s) & Convex		Linear
	dependent	hazard	hazard
Intensive margin	✓	✓	✓
Gross extensive margin	X	✓	✓
Selection	Х	✓	X

- Empirical goal
 - ▶ Measure the shape of the hazard function and gap density in the data
 - Assess the strength of the margins of adjustment unconditionally
 - Reassess the strength of the margins of adjustment conditional on an aggregate shock

Data

- ▶ IRi supermarket scanner data ($\approx 15\%$ of CPI)
 - ▶ Very granular: 170 000 products
 - ▶ Wide coverage: 50 markets across the US, over 3000 stores
 - ▶ 12 years of weekly data (2001-2012)
- Suitable dataset
 - ► Granularity: high-quality information about close substitutes
 - ▶ Long time series: can identify aggregate fluctuations

Data

- ▶ IRi supermarket scanner data ($\approx 15\%$ of CPI)
 - ▶ Very granular: 170 000 products
 - ▶ Wide coverage: 50 markets across the US, over 3000 stores
 - ▶ 12 years of weekly data (2001-2012)
- Suitable dataset
 - Granularity: high-quality information about close substitutes
 - ▶ Long time series: can identify aggregate fluctuations
- - ► Reference prices: filter out temporary discounts Sales filtering
 - ► Time-aggregation: monthly mode

Price gap: Empirics

- ▶ A relevant component of the gap is observable
 - ▶ Distance from the average price of close competitors,
 - ► Controlling for store fixed effects (regional variation, amenities)
 - ▶ Stores wants to avoid price misalignments; higher: low demand; lower: low markup

Price gap: Empirics

- ▶ A relevant component of the gap is observable
 - Distance from the average price of close competitors,
 - Controlling for store fixed effects (regional variation, amenities)
 - ▶ Stores wants to avoid price misalignments; higher: low demand; lower: low markup
- Competitors' reference-price gap

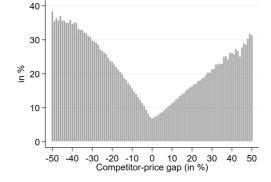
$$x_{pst} = p_{pst}^f - \bar{p}_{pt}^f - \hat{\alpha}_s,$$

where p_{pst}^f is the sales-filtered reference price and $\hat{\alpha}_s$ is the store-FE in $p_{pst}^f - \bar{p}_{pt}^f = \alpha_s$.

Price gap: Empirics

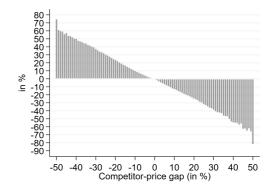
- ► A relevant component of the gap is observable
 - Distance from the average price of close competitors,
 - Controlling for store fixed effects (regional variation, amenities)
 - ▶ Stores wants to avoid price misalignments; higher: low demand; lower: low markup
- Competitors' reference-price gap

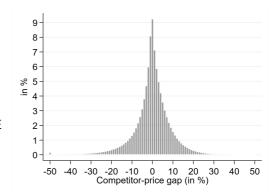
$$x_{pst} = p_{pst}^f - \bar{p}_{pt}^f - \hat{\alpha}_s,$$


where p_{pst}^f is the sales-filtered reference price and $\hat{\alpha}_s$ is the store-FE in $p_{pst}^f - \bar{p}_{pt}^f = \alpha_s$.

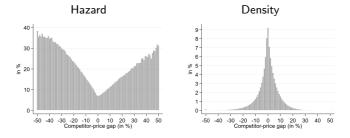
- - ▶ Deduct estimated product-store FE
 - ▶ Raise all estimates with the average product-store FE

Competitors' price gap, frequency


- Adjustment hazard in the data:
 - Increases with distance from 0
 - Approximately (piecewise) linear
 - ▶ Positive at 0, mildly asymmetric
- ▶ In line with empirical literature


Competitors' price gap, size

- Size
 - ► Almost (inverse) one-on-one btw gap and size, on average
 - ► Relevant component of the gap


Competitors' price gap, density

- Density:
 - ► Sizable dispersion, fat tails
 - ► Despite sales-filtering and store-FE

Unconditional decomposition

▶ We use empirical hazard and density

► Sufficient for decomposition (if hazard and density are representative)

$$\frac{\partial \pi^{-}}{\partial m} = \underbrace{\bar{\Lambda}^{-}}_{\text{intensive}} + \underbrace{-\bar{x}^{-} \operatorname{E} \left[\Lambda'(x) | x \geq 0 \right]}_{\text{gross extensive}} + \underbrace{\operatorname{Cov} \left(-x, \Lambda'(x) | x \geq 0 \right)}_{\text{selection}}$$

Unconditional decomposition, cont

Relative contributions of channels

Intensive	Gross extensive	Selection
margin	margin	effect
73.4%	26.5%	0.2%

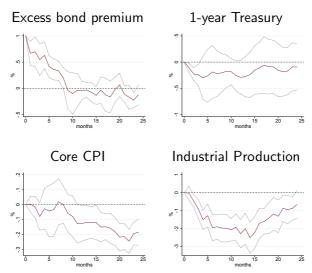
- ► Result
 - Extensive margin effective
 - ► Selection miniscule
- ▶ Next: reassess the same, conditional on an aggregate shock

Impulse response to a credit shock

► Sizable, exogenous tightening of credit conditions

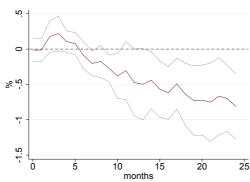
Impulse response to a credit shock

- ▶ Sizable, exogenous tightening of credit conditions
 - Identified with timing restrictions (Gilchrist and Zakrajšek, 2012)
 - Increase in the excess bond premium (default-free corporate spread)
 - No contemporaneous effect on activity, prices and interest rate


Local projections

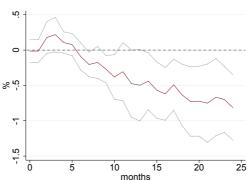
▶ Run a series of OLS regressions *h* (Jordà, 2005)

$$x_{t+h} - x_t = \alpha_h + \mathsf{ebp}_t + \Gamma_h \Psi(L) X_t + u_{t,h},$$


- ▶ x: variable of interest, e.g. (log) price level
- ▶ ebp_t: credit shock
- $ightharpoonup \Gamma_h \Psi(L) X_t$: set of controls: contemporaneous cpi, ip, 1y and 1-12m lags of cpi, ip, 1y, ebp
- Monthly aggregates, seasonally adjusted
- ▶ 95% confidence bands

Credit shock, 2001-2012

Response of the supermarket-price index


Supermarket-price level

► Gradual response, not unlike core CPI

Response of the supermarket-price index

Supermarket-price level

- ► Gradual response, not unlike core CPI
- ▶ Peak effect not before 24 months

Selection

▶ Combine the product-level proxy and the aggregate shock to assess selection.

Selection

- ▶ Combine the product-level proxy and the aggregate shock to assess selection.
- ▶ Do the new adjusters after a shock have large gaps?

Selection

- ▶ Combine the product-level proxy and the aggregate shock to assess selection.
- ▶ Do the new adjusters after a shock have large gaps?
- ▶ Approach: Selection is an interaction between
 - Aggregate shock and
 - Product-level proxy.

Selection

- ▶ Combine the product-level proxy and the aggregate shock to assess selection.
- ▶ Do the new adjusters after a shock have large gaps?
- ▶ Approach: Selection is an interaction between
 - Aggregate shock and
 - Product-level proxy.
- ► Framework: Linear probability model of price adjustment
 - Does the interaction term influences adjustment probability?

Linear probability model

$$\begin{split} I_{pst,t+h}^{\pm} &= \beta_{xih}^{\pm} x_{pst-1} \\ &= \hat{\mathbf{b}} \mathbf{p}_t + \beta_{xh}^{\pm} x_{pst-1} + \beta_{ih}^{\pm} \mathbf{e} \mathbf{b} \mathbf{p}_t + \\ &\qquad \qquad \gamma_h^{\pm} T_{pst-1} + \Gamma_h^{\pm} \Phi(L) X_t + \alpha_{psh}^{\pm} + \alpha_{mh}^{\pm} + \varepsilon_{psth}^{\pm}, \end{split}$$

- ▶ $I_{pst,t+h}^{\pm}$ indicator of price increase (resp. decrease) of product p in store s between t and t+h
- $ightharpoonup x_{pst-1}$: price gap (to control for its regular effect)
- ightharpoonup ebp_t is the aggregate shock (to control for its average effect)
- $ightharpoonup x_{pst-1}ebp_t$ gap-shock interaction (selection: focus of analysis)

Linear probability model, cont.

$$\begin{split} I_{pst,t+h}^{\pm} &= \beta_{xih}^{\pm} x_{pst-1} \\ &= \hat{\mathbf{b}} \mathbf{p}_t + \beta_{xh}^{\pm} x_{pst-1} + \beta_{ih}^{\pm} \mathbf{e} \mathbf{b} \mathbf{p}_t + \\ &\qquad \qquad \gamma_h^{\pm} T_{pst-1} + \Gamma_h^{\pm} \Phi(L) X_t + \alpha_{psh}^{\pm} + \alpha_{mh}^{\pm} + \varepsilon_{psth}^{\pm}, \end{split}$$

- $ightharpoonup T_{pst}$ (log) age of price (to control for time dependence)
- $ightharpoonup \Gamma_h^{\pm} \Phi(L) X_t$ aggregate controls
- ightharpoonup $\alpha \pm_{\it psh}$ product-store FE (to control for unexplained cross-sectional heterogeneity)
- $ightharpoonup lpha_{mh}^{\pm}$ are calendar-month FE (to control for seasonality)
- Standard errors are clustered across categories and time

Results, competitors' price gap, credit shock, h=24m

	(1) Price increase $\left(I_{pst,t+24}^+\right)$	(2) Price decrease $\left(I_{\textit{pst},t+24}^{-}\right)$	
$Gap(x_{pst-1})$	-1.75***	1.55***	
Shock (ebp_t)	-0.03***	0.03***	
Selection $(x_{pst-1} = \hat{b} p_t)$	-0.00	0.01	
Age (T_{pst-1})	0.02***	0.00**	
Product x store FE	✓	✓	
Calendar-month FE	✓	✓	
Time FE	×	×	
N	16.1 <i>M</i>	16.1 <i>M</i>	
within R ²	18.5%	17.3%	

Implications

- ► State dependence: Gap raises frequency Spec.
 - ▶ Probability of price increase 26 pp. lower btw 1st and 3rd quartile (decrease 23 pp higher)

Implications

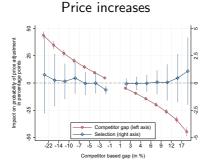
- State dependence: Gap raises frequency Spec.
 - ▶ Probability of price increase 26 pp. lower btw 1st and 3rd quartile (decrease 23 pp higher)
- ► Adjustment on the (gross) extensive margin: aggregate shock shifts the probability of price increases vs price decreases
 - ► Probability of price increase 1pp lower after a 1sd credit tightening (30 bps)
 - ▶ Probability of price decrease 1pp higher after a similar tightening

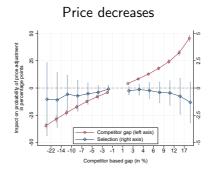
Implications, cont.

- ► No selection: Specification
 - ▶ No evidence of significant interaction
 - ► Conditional on the shock, not adjusting the prices with larger gap

Implications, cont.

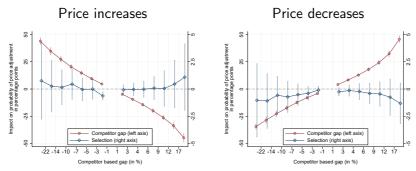
- ► No selection: Specification
 - ▶ No evidence of significant interaction
 - ▶ Conditional on the shock, not adjusting the prices with larger gap
- ▶ Time dependence
 - Older prices are changed with higher probability


Margins of adjustment


	Data	Time-	(S,s) & Convex	Linear
		dependent	hazard	hazard
Intensive margin	1	✓	✓	✓
Gross extensive margin	✓	×	✓	✓
Selection	X	×	✓	X

- Evidence consistent with linear hazard models with no selection
- ▶ Inconsistent with time-dependent (constant hazard) models (Calvo, 1983)
- ▶ Inconsistent with (S,s) and convex hazard models (Golosov and Lucas, 2007)

Robustness


▶ Relax linearity restriction: 15 gap groups, regressions with group dummies

Robustness

▶ Relax linearity restriction: 15 gap groups, regressions with group dummies

▶ Robustness to non-linearity, alternative gap, shock, data

Selected literature

▶ Selection is a robust prediction of menu cost models with steep (step) hazard functions

- ► Selection is a robust prediction of menu cost models with steep (step) hazard functions
- ► Classic papers (Caplin and Spulber, 1987; Golosov and Lucas, 2007)

- ▶ Selection is a robust prediction of menu cost models with steep (step) hazard functions
- ► Classic papers (Caplin and Spulber, 1987; Golosov and Lucas, 2007)
- ► More recent iterations:
 - ▶ Karadi and Reiff (2019): even if idiosyncratic shocks have fat tails (Midrigan, 2011)
 - ▶ Bonomo et al. (2020): even with multiproduct firms (Alvarez and Lippi, 2014)

- Selection is a robust prediction of menu cost models with steep (step) hazard functions
- ► Classic papers (Caplin and Spulber, 1987; Golosov and Lucas, 2007)
- More recent iterations:
 - ▶ Karadi and Reiff (2019): even if idiosyncratic shocks have fat tails (Midrigan, 2011)
 - ▶ Bonomo et al. (2020): even with multiproduct firms (Alvarez and Lippi, 2014)
- Selection weakens with flatter hazard function caused by information frictions (Woodford, 2009; Costain and Nakov, 2011), or 'random menu costs' (Dotsey et al., 1999; Luo and Villar, 2021; Alvarez et al., 2022)

- Selection is a robust prediction of menu cost models with steep (step) hazard functions
- Classic papers (Caplin and Spulber, 1987; Golosov and Lucas, 2007)
- More recent iterations:
 - ▶ Karadi and Reiff (2019): even if idiosyncratic shocks have fat tails (Midrigan, 2011)
 - ▶ Bonomo et al. (2020): even with multiproduct firms (Alvarez and Lippi, 2014)
- Selection weakens with flatter hazard function caused by information frictions (Woodford, 2009; Costain and Nakov, 2011), or 'random menu costs' (Dotsey et al., 1999; Luo and Villar, 2021; Alvarez et al., 2022)
- ▶ Us: Empirical question

Selected literature, cont.

- ▶ Implicit hazard-function (Caballero and Engel, 2007; Alvarez et al., 2022)
 - Estimate density and hazard function by matching moments
 - Quadratic hazard function (result in Alvarez et al., 2022)
 - ► Sizable selection (Berger and Vavra, 2018; Petrella, Santoro and Simonsen, 2019)
 - ▶ Weak selection (Luo and Villar, 2021; Alvarez et al., 2022)

Selected literature, cont.

- ▶ Implicit hazard-function (Caballero and Engel, 2007; Alvarez et al., 2022)
 - ▶ Estimate density and hazard function by matching moments
 - Quadratic hazard function (result in Alvarez et al., 2022)
 - ► Sizable selection (Berger and Vavra, 2018; Petrella, Santoro and Simonsen, 2019)
 - Weak selection (Luo and Villar, 2021; Alvarez et al., 2022)
- Explicit hazard function
 - ▶ Relative to competitors' prices (Campbell and Eden, 2014; Gagnon, López-Salido and Vincent, 2012): ~linear, flat, no selection
 - ▶ Relative to wholesale prices/cost (Eichenbaum et al., 2011; Gautier et al., 2022): ~linear, steeper, no selection
 - ▶ Us: competitors' prices, multiple retailers, control for heterogeneity

Selected literature, cont.

- ▶ Construct informative moments that reveals selection
 - ► Carvalho and Kryvtsov (2021): preset-price-relative vs. inflation
 - ▶ Dedola et al. (2019): selection bias in Danish PPI
 - ► Us: shock-gap interaction on frequency

Conclusion

▶ Use granular supermarket and PPI data to measure selection

Conclusion

- ▶ Use granular supermarket and PPI data to measure selection
- ► We have found that
 - 1. State dependence: Adjustment probability increases linearly with gap
 - 2. No selection: Conditional on shock adjustment independent of price gap
 - 3. Gross extensive margin: key adjustment channel

Conclusion

- ▶ Use granular supermarket and PPI data to measure selection
- We have found that
 - 1. State dependence: Adjustment probability increases linearly with gap
 - 2. No selection: Conditional on shock adjustment independent of price gap
 - 3. Gross extensive margin: key adjustment channel
- Consistent with linear-hazard state-dependent models

Conclusion, cont.

Implications

- Evidence inconsistent with standard time-dependent (Calvo, 1983) or state-dependent (Golosov and Lucas, 2007) models
- ► Shift between increases versus decreases determines the extensive-margin effect □ata
- ▶ Slope of the hazard function is informative about the strength of this shift
- ▶ Flat hazard implies sizable monetary non-neutrality

References I

Alvarez, Fernando and Francesco Lippi (2014) "Price Setting with Menu Cost for Multiproduct Firms," *Econometrica*, Vol. 82, pp. 89–135.

Alvarez, Fernando, Francesco Lippi, and Aleksei Oskolkov (2022) "The Macroeconomics of Sticky Prices with Generalized Hazard Functions," *The Quarterly Journal of Economics*, Vol. 137, pp. 989–1038.

Anderson, Eric, Benjamin A. Malin, Emi Nakamura, Duncan Simester, and Jon Steinsson (2017) "Informational Rigidities and the Stickiness of Temporary Sales," *Journal of Monetary Economics*, Vol. 90, pp. 64–83.

References II

Auclert, Adrien, Rodolfo D Rigato, Matthew Rognlie, and Ludwig Straub (2022) "New Pricing Models, Same Old Phillips Curves?" Technical report, National Bureau of Economic Research.

- Berger, David and Joseph Vavra (2018) "Dynamics of the US Price Distribution," *European Economic Review*, Vol. 103, pp. 60–82.
- Bils, Mark and Peter J. Klenow (2004) "Some Evidence on the Importance of Sticky Prices," *Journal of Political Economy*, Vol. 112, pp. 947–985.
- Bonomo, Marco, Carlos Carvalho, Oleksiy Kryvtsov, Sigal Ribon, and Rodolfo Rigato (2020) "Multi-Product Pricing: Theory and Evidence from Large Retailers in Israel," Staff Working Papers 20-12, Bank of Canada.

References III

- Caballero, Ricardo J and Eduardo MRA Engel (2007) "Price Stickiness in Ss models: New Interpretations of Old Results," *Journal of Monetary Economics*, Vol. 54, pp. 100–121.
- Calvo, Guillermo A. (1983) "Staggered Prices in a Utility-Maximizing Framework," *Journal of Monetary Economics*, Vol. 12, pp. 383 398.
- Campbell, Jeffrey R. and Benjamin Eden (2014) "RIGID PRICES: EVIDENCE FROM U.S. SCANNER DATA," *International Economic Review*, Vol. 55, pp. 423–442.
- Caplin, Andrew S. and Daniel F. Spulber (1987) "Menu Costs and the Neutrality of Money," *The Quarterly Journal of Economics*, Vol. 102, pp. 703–726.
- Carvalho, Carlos and Oleksiy Kryvtsov (2021) "Price selection," *Journal of Monetary Economics*, Vol. 122, pp. 56–75.

References IV

Costain, James and Anton Nakov (2011) "Distributional Dynamics under Smoothly State-Dependent Pricing," *Journal of Monetary Economics*, Vol. 58, pp. 646 – 665.

- Dedola, L, M Strom Krisoffersen, and G Zullig (2019) "Price Synchronization and Cost Passthrough in Multiproduct Firms: Evidence from Danish Producer Prices," Technical report, Mimeo.
- Dotsey, Michael, Robert G. King, and Alexander L. Wolman (1999) "State-Dependent Pricing and the General Equilibrium Dynamics of Money and Output," *The Quarterly Journal of Economics*, Vol. 114, pp. 655–690.
- Eichenbaum, Martin, Nir Jaimovich, and Sergio Rebelo (2011) "Reference Prices, Costs, and Nominal Rigidities," *American Economic Review*, Vol. 101, pp. 234–62.

References V Gagnon, Etienne, David López-Salido, and Nicolas Vincent (2012) "Individual Price Adjustment along the Extensive Margin," *NBER Macroeconomics Annual 2012, Volume 27*, pp. 235–281.

- Gautier, Erwan, Magali Marx, and Paul Vertier (2022) "The Transmission of Nominal Shocks when Prices are Sticky," unpublished manuscript.
- Gertler, Mark and Peter Karadi (2015) "Monetary Policy Surprises, Credit Costs, and Economic Activity," *American Economic Journal: Macroeconomics*, Vol. 7, pp. 44–76.
- Gilchrist, Simon and Egon Zakrajšek (2012) "Credit Spreads and Business Cycle Fluctuations," *American Economic Review*, Vol. 102, pp. 1692–1720.
- Golosov, Mikhail and Robert E. Lucas (2007) "Menu Costs and Phillips Curves," *Journal of Political Economy*, Vol. 115, pp. 171–199.

References VI

Jarociński, Marek and Peter Karadi (2020) "Deconstructing Monetary Policy Surprises: the Role of Information Shocks," *American Economic Review: Macroeconomics*, Vol. 12, pp. 1–43.

- Jordà, Öscar (2005) "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, Vol. 95, pp. 161–182.
- Karadi, Peter and Adam Reiff (2019) "Menu Costs, Aggregate Fluctuations, and Large Shocks," *American Economic Journal: Macroeconomics*, Vol. 11, pp. 111–46.
- Luo, Shaowen and Daniel Villar (2021) "The Price Adjustment Hazard Function: Evidence from High Inflation Periods," *Journal of Economic Dynamics and Control*, Vol. 130, p. S0165188921000701.

References VII

Midrigan, Virgiliu (2011) "Menu Costs, Multiproduct Firms, and Aggregate Fluctuations," *Econometrica*, Vol. 79, pp. 1139–1180.

- Nakamura, Emi and Jón Steinsson (2018) "High-Frequency Identification of Monetary Non-Neutrality: The Information Effect," *The Quarterly Journal of Economics*, Vol. 133, pp. 1283–1330.
- Petrella, Ivan, Emiliano Santoro, and Lasse P. Simonsen (2019) "Time-varying Price Flexibility and Inflation Dynamics," EMF Research Papers 28, Economic Modelling and Forecasting Group.
- Woodford, Michael (2009) "Information-Constrained State-Dependent Pricing," *Journal of Monetary Economics*, Vol. 56, pp. S100–S124.

IRi: data cleaning

▶ Posted prices:

$$P_{psw} = \frac{TR_{psw}}{Q_{psw}}$$

- ► *TR* is the total revenue
- Q is the quantity sold for each product
- ightharpoonup p in store s in week w

IRi: data cleaning

► Posted prices:

$$P_{psw} = \frac{T R_{psw}}{Q_{psw}}$$

- ► *TR* is the total revenue
- Q is the quantity sold for each product
- p in store s in week w
- Cleaning
 - ▶ Round to the nearest penny (8.7%)
 - ▶ Private label products: new products at relabeling
 - Drop products that are not available the whole year

► Sales: high-frequency noise (Anderson et al., 2017)

- ► Sales: high-frequency noise (Anderson et al., 2017)
- ► Modal-price filter of ?

- ► Sales: high-frequency noise (Anderson et al., 2017)
- Modal-price filter of ?
- ► Reference prices P_{psw}^f on weekly data
 - ▶ 13-week two-sided modal price
 - ▶ Iterative updating to align the change of P_{psw}^f with P_{psw}
 - ▶ Reference price changes less than a third of posted price changes

- ► Sales: high-frequency noise (Anderson et al., 2017)
- Modal-price filter of ?
- ► Reference prices P_{psw}^f on weekly data
 - ▶ 13-week two-sided modal price
 - Iterative updating to align the change of P_{psw}^f with P_{psw}
 - ▶ Reference price changes less than a third of posted price changes
- Results are robust to using posted prices

- ▶ Sales: high-frequency noise (Anderson et al., 2017)
- ► Modal-price filter of ?
- ▶ Reference prices P_{psw}^f on weekly data
 - ▶ 13-week two-sided modal price
 - Iterative updating to align the change of P_{psw}^f with P_{psw}
 - ▶ Reference price changes less than a third of posted price changes
- Results are robust to using posted prices
- ▶ Monthly prices P_{pst} : mode of weekly prices

IRi: Expenditure weights

▶ Fixed-weight index (as CPI). Annual weights $t \in y$

$$\omega_{psy} = \frac{TR_{psy}}{\sum_{p} \sum_{s} TR_{psy}}$$

IRi: Expenditure weights

▶ Fixed-weight index (as CPI). Annual weights $t \in y$

$$\omega_{psy} = \frac{TR_{psy}}{\sum_{p} \sum_{s} TR_{psy}}$$

IRi: Expenditure weights

▶ Fixed-weight index (as CPI). Annual weights $t \in y$

$$\omega_{\textit{psy}} = \frac{\textit{TR}_{\textit{psy}}}{\sum_{\textit{p}} \sum_{\textit{s}} \textit{TR}_{\textit{psy}}}$$

▶ Posted and reference-price inflation (i = p, f)

$$\pi_t^i = \sum_{s} \sum_{p} \omega_{pst} \left(p_{pst}^i - p_{pst-1}^i \right)$$

References

Data

IRi: Expenditure weights

▶ Fixed-weight index (as CPI). Annual weights $t \in y$

$$\omega_{\textit{psy}} = \frac{\textit{TR}_{\textit{psy}}}{\sum_{\textit{p}} \sum_{\textit{s}} \textit{TR}_{\textit{psy}}}$$

▶ Posted and reference-price inflation (i = p, f)

$$\pi_t^i = \sum_{s} \sum_{p} \omega_{pst} \left(p_{pst}^i - p_{pst-1}^i \right)$$

Sales-price inflation

$$\pi_t^s = \pi_t^p - \pi_t^f$$

Robustness

References

IRi: Expenditure weights

▶ Fixed-weight index (as CPI). Annual weights $t \in y$

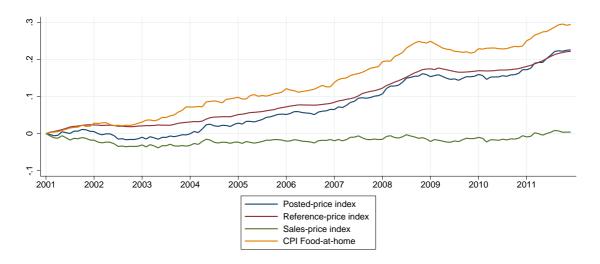
$$\omega_{psy} = \frac{TR_{psy}}{\sum_{p} \sum_{s} TR_{psy}}$$

▶ Posted and reference-price inflation (i = p, f)

$$\pi_t^i = \sum_{s} \sum_{p} \omega_{pst} \left(p_{pst}^i - p_{pst-1}^i \right)$$

Sales-price inflation

$$\pi_t^s = \pi_t^p - \pi_t^f$$


Seasonal adjustment using monthly dummies

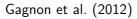
► Focus: aggregate shock – price-gap interaction term

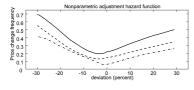
- ► Focus: aggregate shock price-gap interaction term
- ▶ Price increases I_{pst}^+ : expected sign is positive
 - ▶ Driven by products with negative gap $(x_{pst-1} \le 0)$
 - lacktriangledown Credit tightening (e $\hat{\mathbf{p}}_t \geq \mathbf{0}$): less price increases
 - Credit easing $(\hat{ebp}_t < 0)$: more price increases

- ► Focus: aggregate shock price-gap interaction term
- ▶ Price increases I_{pst}^+ : expected sign is positive
 - ▶ Driven by products with negative gap $(x_{pst-1} \le 0)$
 - ▶ Credit tightening ($\hat{ebp}_t \ge 0$): less price increases
 - Credit easing ($\hat{ebp}_t < 0$): more price increases
- ▶ Price decreases I_{pst}^- : expected sign is positive
 - ▶ Driven by products with positive gap $(x_{pst-1} \ge 0)$
 - Credit tightening ($\hat{ebp}_t \ge 0$): more price decreases
 - Credit easing ($\hat{ebp}_t < 0$): less price decreases

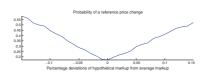
Posted, reference and sales-price indices

IRi supermarket index

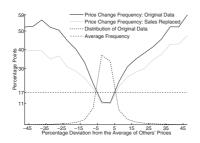

► Similar business-cycle fluctuations as CPI food-at-home

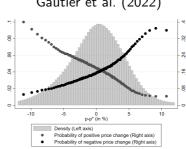

IRi supermarket index

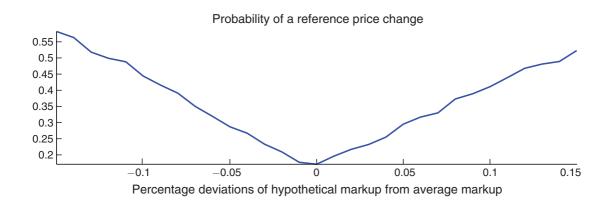
- Similar business-cycle fluctuations as CPI food-at-home
- ► Trend inflation lower than CPI food-at-home
 - ► Main reason: new products
 - ► Higher-quality higher-price than existing products
 - ▶ CPI takes this into account we only use surviving products

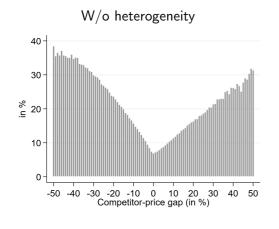

Motivation Framework Data Credit shock Selection Robustness Literature Conclusion References

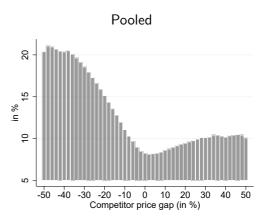
Estimated empirical hazards



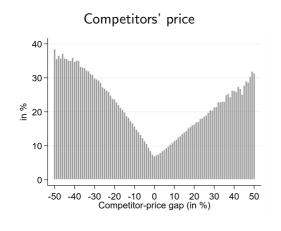

Eichenbaum et al. (2011)

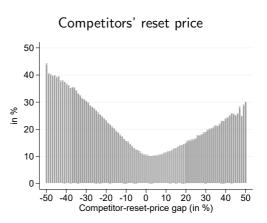

Campbell and Eden (2014)


Gautier et al. (2022)



Estimated empirical hazard: Eichenbaum et al. (2011)




Competitors' price gap, frequency, with and without heterogeneity

Competitors' price gap vs. competitors' reset-price gap, frequency

► Additional interest

- Additional interest
- ▶ Impact of the price gap β_{xh} : expected sign: negative for I_{pst}^+ (positive for I_{pst}^-)
 - ► More negative gap: more price increases
 - ▶ (More positive gap: more price decreases)

- Additional interest
- ▶ Impact of the price gap β_{xh} : expected sign: negative for I_{pst}^+ (positive for I_{pst}^-)
 - More negative gap: more price increases
 - (More positive gap: more price decreases)
- ▶ Impact of aggregate shock β_{ih} : expected sign: negative for I_{pst}^+ (positive for I_{pst}^-)
 - Credit tightening ($\hat{ebp}_t > 0$) less increases, more decreases
 - Credit easing $(\hat{epp}_t < 0)$ more increases, less decreases

▶ 2 additional specifications for robustness

- ▶ 2 additional specifications for robustness
- ► Time-fixed effects (drop the direct impact of shock)

- ▶ 2 additional specifications for robustness
- ► Time-fixed effects (drop the direct impact of shock)
- Separate coefficients for positive and negative gaps

Results, competitors' price gap, credit shock, h=24m

	(1) (2) (3) Price increase $\left(I_{pst,t+24}^{+}\right)$			(4) (5) (6) Price decrease $\left(I_{pst,t+24}^{-}\right)$		
$Gap\left(x_{pst-1}\right)$	-1.75*** -0.03***	-1.75***		1.55*** 0.03***	1.55***	
Shock (ebp _t) Selection (x_{pst-1} e \hat{b} p _t)	-0.03 -0.00	-0.00		0.03	0.01	
Age (T_{pst-1}) Pos. gap (x_{pst-1}^+)	0.02***	0.02***		0.00**	0.01***	
Neg. gap (x_{pst-1}^-)						
Pos. sel. $(x_{pst-1}^+ \hat{\text{ebp}})$ Neg. sel. $(x_{pst-1}^- \hat{\text{ebp}})$						
Product x store FE	✓	1		/	1	
Calendar-month FE	✓	×		✓	×	
Time FE	Х	✓		X	✓	
N	16.1 <i>M</i>	16.1 <i>M</i>		16.1 <i>M</i>	16.1 <i>M</i>	
within R ²	18.5%	16.6%		17.3%	16.4%	

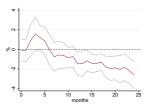
Results, competitors' price gap, credit shock, h=24m

	(1)	(2)	(3)	(4)	(5)	(6)	
	Price	Price increase $\left(I_{pst,t+24}^+\right)$			Price decrease $\left(I_{pst,t+24}^{-} ight)$		
$Gap\ (x_{pst-1})$	-1.75***	-1.75***		1.55***	1.55***		
Shock (ebp_t)	-0.03***		-0.04***	0.03***		0.03***	
Selection $(x_{pst-1}e\hat{b}p_t)$	-0.00	-0.00		0.01	0.01		
Age (T_{pst-1})	0.02***	0.02***	0.02***	0.00**	0.01***	0.01***	
Pos. gap (x_{pst-1}^+)			-2.26***			2.29***	
Neg. gap (x_{pst-1}^-)			-1.44***			1.10***	
Pos. sel. $(x_{pst-1}^+ = \hat{b}p)$			0.04			-0.04	
Neg. sel. $(x_{pst-1}^- e\hat{b}p)$			-0.03			0.04	
Product x store FE	✓	/	1	1	/	1	
Calendar-month FE	1	×	1	✓	×	✓	
Time FE	Х	✓	Х	×	✓	×	
N	16.1 <i>M</i>	16.1 <i>M</i>	16.1 <i>M</i>	16.1 <i>M</i>	16.1 <i>M</i>	16.1 <i>M</i>	
within R^2	18.5%	16.6%	18.9%	17.3%	16.4%	18.2%	

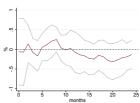
Motivation Framework Data Gap Credit shock Selection Robustness Literature Conclusion References

Gap group-dummies, within product-store, 24m

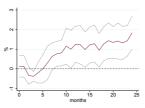
- Hazard close to linear and quite symmetric
 - Heterogeneity is controlled for (item, time FEs)
 - Predicted frequency in 24 months

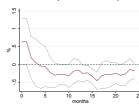


Average moments


Annualized inflation		Frequency			
Posted	Reference	Posted	Reference		
1.84 %	1.75%	36.2%	10.8%		
Reference	e frequency	Reference size			
Increase	Decrease	Increase	Decrease		
6.6%	6.6% 4.2%		-15.1%		

Data: response from shift from increases to decreases Expressions


Frequency (increases)


Size (increases)

Frequency (decreases)

Size (decreases)

Gross extensive margin

► Micro-data: how do standard moments adjust to aggregate shocks • Average moments

Gross extensive margin

- ► Micro-data: how do standard moments adjust to aggregate shocks ► Average moments
- ► Frequency:

$$\xi_{t,t+h}^{\pm} = \sum_{i} \overline{\omega}_{it,t+h} I_{it,t+h}^{\pm},$$

Gross extensive margin

- ► Micro-data: how do standard moments adjust to aggregate shocks ► Average moments
- ► Frequency:

$$\xi_{t,t+h}^{\pm} = \sum_{i} \overline{\omega}_{it,t+h} I_{it,t+h}^{\pm},$$

Size

$$\psi_{t,t+h}^{\pm} = \frac{\sum_{i} \overline{\omega}_{it,t+h} I_{it,t+h}^{\pm} (p_{it+h} - p_{it-1})}{\xi_{t,t+h}^{\pm}}.$$

Data

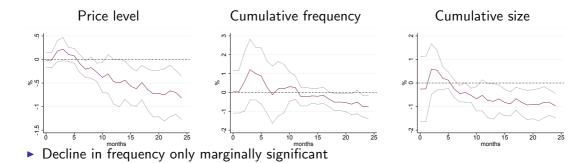
Gan

Gross extensive margin

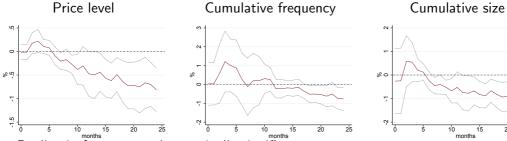
► Micro-data: how do standard moments adjust to aggregate shocks ► Average moments

► Frequency:

$$\xi_{t,t+h}^{\pm} = \sum_{i} \bar{\omega}_{it,t+h} I_{it,t+h}^{\pm},$$


Size

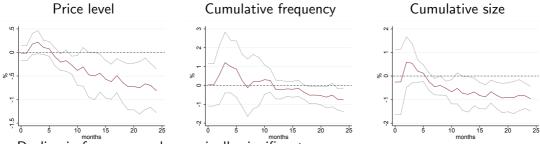
$$\psi_{t,t+h}^{\pm} = \frac{\sum_{i} \bar{\omega}_{it,t+h} I_{it,t+h}^{\pm} (p_{it+h} - p_{it-1})}{\xi_{t,t+h}^{\pm}}.$$


Decomposition

$$p_{t+h} - p_{t-1} = \pi_{t,t+h} = \xi_{t,t+h}^+ \psi_{t,t+h}^+ + \xi_{t,t+h}^- \psi_{t,t+h}^-,$$

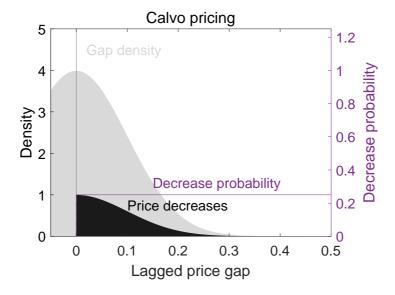
Price changes

Price changes



- ► Decline in frequency only marginally significant
- ► Average size declines

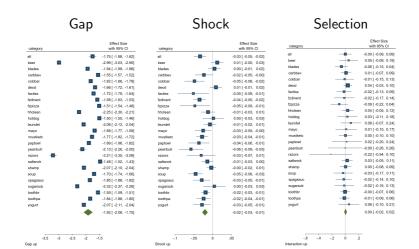
25


20

Price changes

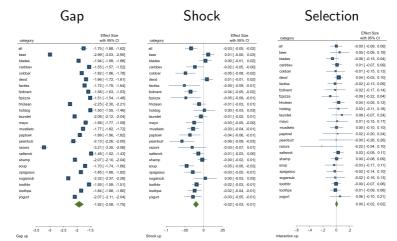
- ▶ Decline in frequency only marginally significant
- Average size declines
- ▶ In line with both time-dependent (Calvo, 1983) and state-dependent (Golosov and Lucas, 2007) models

Time-dependent model (Calvo, 1983)

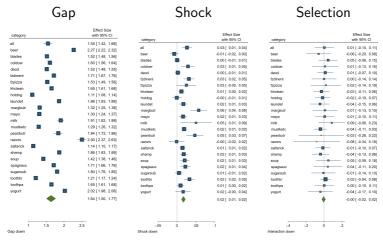


Nonlinearity II: Probit

	(1)	(2)	(3)
	Multinomial probit Incr. $\left(I_{pst,t+24}^+\right)$ Decr. $\left(I_{pst,t+24}^-\right)$		Ordered probit
			Change $(I_{pst,t+24})$
$Gap\ (x_{pst-1})$	-3.15***	3.37***	-4.24***
$Shock\;(ebp_t)$	-0.11***	0.05***	-0.10***
Selection $(x_{pst-1} = \hat{b}p_t)$	-0.05	-0.21**	0.04
Age (T_{pst-1})	0.01*	-0.03***	0.02***
Freq. incr. (ξ_{psM}^+)	5.17***	2.91***	1.79***
Freq. decr. (ξ_{psM}^-)	3.02***	5.84***	-1.33***
Product \times store FE	×	×	×
Calendar-month FE	✓	✓	✓
Time FE	×	×	×
N	16.1 <i>M</i>	16.1 <i>M</i>	14.3 <i>M</i>

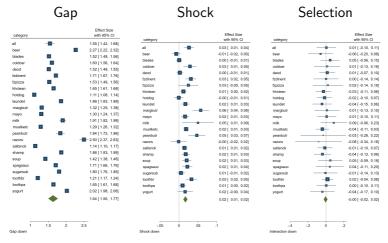

Heterogeneity across product categories

▶ Heterogeneous demand elasticities might bias our baseline


Heterogeneity across product categories

- ▶ Heterogeneous demand elasticities might bias our baseline
- ► Separate estimates across product categories: price increases

Heterogeneity across product categories, cont.


Separate estimates across product categories: price decreases

Motivation Framework Data Gap Credit shock Selection Robustness Literature Conclusion References

Heterogeneity across product categories, cont.

Separate estimates across product categories: price decreases

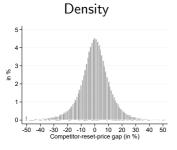
Robust results

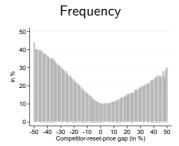
Competitors' reset-price gap

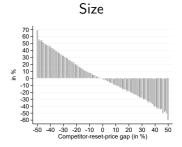
► Alternative price-gap proxy

Competitors' reset-price gap

- ► Alternative price-gap proxy
- \triangleright For the optimal price, only use those competitors' prices that changed in t


Competitors' reset-price gap


- Alternative price-gap proxy
- \triangleright For the optimal price, only use those competitors' prices that changed in t
- ▶ Formally: Reference price-reset gap (x_{pst}^r)

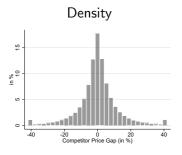

$$x_{pst}^{r} = p_{pst}^{f} - \overline{p}_{pt}^{fr} - \alpha_{sc}$$

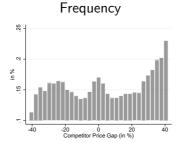
- $\triangleright p_{pst}^f$: reference price
- $ightharpoonup \overline{p}_{pt}^{fr}$ average ref. price of changers
- α_{sc} store and category fixed effect

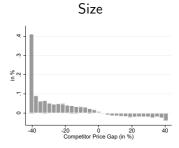
Competitors' reset price gap

Results, competitors' reset-price gap, credit shock, h=24m

	(1)	(2)	(3)	(4)
	Increa	ises $\left(I_{pst,t+24}^+\right)$	Decreases $\left(I_{pst,t+24}^{-}\right)$	
	Baseline	Competitor-reset-gap	Baseline	Competitor-reset-gap
$Gap\ (x_{\mathit{pst}-1})$	-1.75***	-1.29***	1.55***	1.19***
	(0.06)	(0.04)	(0.06)	(0.06)
Shock (ebp_t)	-0.03***	-0.05***	0.03***	0.04***
	(0.01)	(0.01)	(0.01)	(0.01)
Selection $(x_{pst-1}\widehat{ebp}_t)$	-0.00	-0.01	0.01	0.00
	(0.04)	(0.05)	(0.05)	(0.06)
Age (T_{pst-1})	0.02***	0.02***	0.00**	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Product x store FE	/	✓	1	/
Calendar-month FE	✓	✓	✓	✓
Time FE	×	×	×	×
N	16.1 <i>M</i>	9.3 <i>M</i>	16.1 <i>M</i>	9.3 <i>M</i>
Within R ²	18.5%	15.2%	17.3%	14.5%


PPI microdata

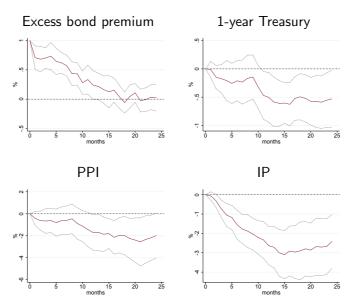

- ► Coverage
 - ▶ 1981-2012 monthly data
 - ► Representative of the US economy


PPI microdata

- ► Coverage
 - ▶ 1981-2012 monthly data
 - ► Representative of the US economy
- ▶ No sales filtering

Competitors' price gap

PPI: gaps


► Size: clear negative relationship with the gaps

PPI: gaps

- ► Size: clear negative relationship with the gaps
- ► Frequency:
 - ▶ Increases with competitors' gap eventually
 - ► Initially decreases with higher gap

Motivation Framework Data Gap Credit shock Selection Robustness Literature Conclusion References

Credit shock

Results, competitors' price gap, credit shock, h=24m, PPI

	(1) Increases $\left(I_{p}^{+}\right)$	(2) $t_{st,t+24}$	(3) Decreases $\left(I_{p}^{-}\right)$	(4) $ st, t+24$
$Gap\ (x_{pst-1})$ $Shock\ (ebp_t)$	-0.23*** -0.023***	-0.23***	0.22*** 0.021***	0.22***
Selection $(x_{pst-1}e\hat{b}p_t)$ Age (T_{pst-1})	0.00 0.035***	-0.00 0.035***	-0.00 0.01***	-0.00 0.01***
Product x store FE	✓	✓	√	✓
Calendar-month FE	✓	×	✓	×
Time FE	×	✓	Х	✓
N	9.7 <i>M</i>	9.7 <i>M</i>	9.7 <i>M</i>	9.7 <i>M</i>
Within R ²	4.4%	3.5%	4.3%	3.7%

▶ Results are robust using longer and wider-coverage data

- ▶ Results are robust using longer and wider-coverage data
- ► Gap: significant unconditional impact on frequency

- ▶ Results are robust using longer and wider-coverage data
- ► Gap: significant unconditional impact on frequency
- Aggregate shock: shifts the probability of adjustment

- ▶ Results are robust using longer and wider-coverage data
- ► Gap: significant unconditional impact on frequency
- Aggregate shock: shifts the probability of adjustment
- ▶ No selection:
 - ▶ No evidence of interaction:
 - Conditional on the shock, not adjusting prices with larger gap

Impulse responses to monetary policy shocks

- High-frequency identification of monetary policy shocks (Gertler and Karadi, 2015;
 Nakamura and Steinsson, 2018)
 - Intra-day financial market surprises around press statements
 - Control for information shocks using the co-movement of interest rates and stock prices (Jarociński and Karadi, 2020)

Impulse responses to monetary policy shocks

- High-frequency identification of monetary policy shocks (Gertler and Karadi, 2015;
 Nakamura and Steinsson, 2018)
 - Intra-day financial market surprises around press statements
 - Control for information shocks using the co-movement of interest rates and stock prices (Jarociński and Karadi, 2020)
- Calculate relevant price-setting moments

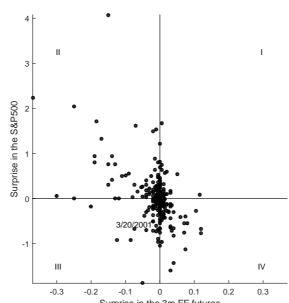
Impulse responses to monetary policy shocks

- High-frequency identification of monetary policy shocks (Gertler and Karadi, 2015;
 Nakamura and Steinsson, 2018)
 - Intra-day financial market surprises around press statements
 - Control for information shocks using the co-movement of interest rates and stock prices (Jarociński and Karadi, 2020)
- Calculate relevant price-setting moments
- ► Estimate impulse responses using local projections (Jordà, 2005)

High-frequency identification of monetary policy shocks

► Central bank announcements generate unexpected variation in interest rates: can be used to assess monetary non-neutrality.

High-frequency identification of monetary policy shocks


Central bank announcements generate unexpected variation in interest rates: can be used to assess monetary non-neutrality.

- Surprises
 - ▶ Measure change in interest rates in a 30-minute window around policy announcements
 - Only central bank announcements systematically impacts surprises

High-frequency identification of monetary policy shocks

- Central bank announcements generate unexpected variation in interest rates: can be used to assess monetary non-neutrality.
- Surprises
 - ▶ Measure change in interest rates in a 30-minute window around policy announcements
 - Only central bank announcements systematically impacts surprises
- ► FOMC press statements (8 times a year)

High-frequency surprises

Interest rate

- ▶ Preferred interest rate: 3-months federal funds futures rate
 - Closely controlled by the FOMC
 - ▶ Incorporates next FOMC meeting: with near-term forward guidance
 - Does not affected by 'timing' surprises
 - ▶ It stays active after ZLB is reached

Controlling for central bank information shocks

- ▶ Issue: announcements can reveal information
 - not just about policy,
 - but also about the central bank's economic outlook.

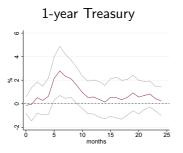
Controlling for central bank information shocks

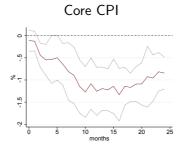
- Issue: announcements can reveal information
 - not just about policy,
 - but also about the central bank's economic outlook.
- Use responses in stock markets (Jarociński and Karadi, 2020)
 - ▶ Negative co-movement in interest rates and stock prices: monetary policy shocks
 - ▶ Positive co-movement: central bank information shocks

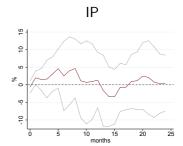
Controlling for central bank information shocks

- Issue: announcements can reveal information
 - not just about policy,
 - but also about the central bank's economic outlook.
- Use responses in stock markets (Jarociński and Karadi, 2020)
 - ▶ Negative co-movement in interest rates and stock prices: monetary policy shocks
 - ▶ Positive co-movement: central bank information shocks
- ▶ 'Poor man's sign restriction': use events when the co-movement was negative

Data

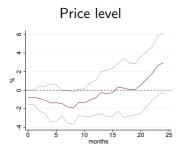

Local projections

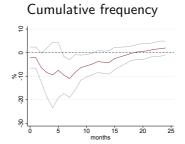

▶ Run a series of OLS regressions h (Jordà, 2005)

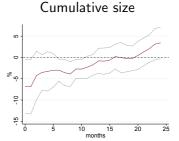

$$x_{t+h} - x_t = \alpha_h + \beta_h \Delta i_t + \Gamma_h \Psi(L) X_t + u_{t,h},$$

- x: variable of interest, e.g. (log) price level
- $ightharpoonup \Delta i_t$: high-frequency monetary policy shock
- $\Gamma_h \Psi(L) X_t$: set of controls: various lags of cpi, ip, dely

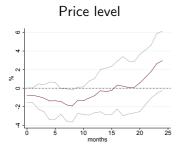
Impulse responses of key macroeconomic variables to a monetary policy tightening

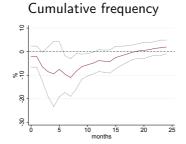

Impulse responses of key macroeconomic variables to a monetary policy tightening

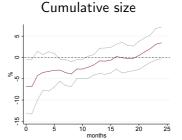




Price changes

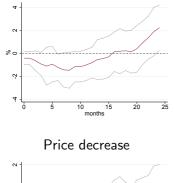


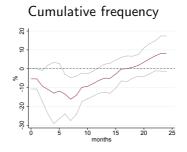




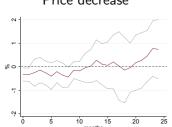
► Aggregate frequency drops

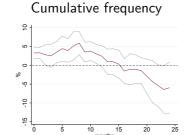
Price changes

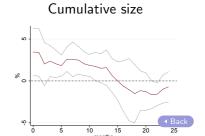



- Aggregate frequency drops
- ► Size declines


Motivation Framework Data Gap Credit shock Selection Robustness Literature Conclusion References


Less increases more decreases


Price increase



Results, competitors' price gap, MP shock, h=12m

	(1)	(2)	(3)	(4)	(5)	(6)
	Price i	ncreases $(I_{pst,t+}^+)$	-12)	Price decreases $\left(I_{pst,t+12}^{-}\right)$		12)
$Gap\left(x_{pst-1}\right)$	-1.71***	-1.71***		1.36***	1.36***	
Shock (Δi_t)	-0.03*		-0.03	0.01*		0.01*
Selection $(x_{pst-1}\Delta i_t)$	-0.07	-0.07		0.07	0.07	
Age (T_{pst-1})	0.03***	0.03***	0.03***	0.01***	0.01***	0.01***
Positive gap (x_{pst-1}^+)			-1.92***			1.93***
Negative gap (x_{pst-1}^-)			-1.58***			1.01***
Pos. selection $(x_{pst-1}^+ \Delta i_t)$			-0.05			0.05
Neg. selection $(x_{pst-1}^{-}\Delta i_t)$			-0.08			0.08
Product x store FE	✓	/	/	1	1	/
Calendar-month FE	1	×	1	1	×	✓
Time FE	Х	✓	Х	×	✓	×
N	23.7M	23.7M	23.7M	23.7 <i>M</i>	23.7M	23.7M
Within R ²	16.4%	14.7%	16.5%	13.3%	12.7%	13.8%

MP shock: selection

► Robustly no evidence for selection

MP shock: selection

- ► Robustly no evidence for selection
- ► Significant shift in adjustment probability in supermarket prices

Robustness to dropping fixed effects

	(1) Increases ($\binom{2}{pst,t+24}$	(3) Decreases ($I_{pst,t+24}^{-}\Big)$
$Gap\left(x_{pst-1}\right)$	-1.75***	-0.99***	1.55***	0.90***
Shock (ebp_t)	-0.03***	-0.04***	0.03***	0.03**
Selection $(x_{pst-1}e\hat{b}p_t)$	-0.00	-0.01	0.01	0.02
Age (T_{pst-1})	0.02***	-0.01**	0.00**	-0.03***
Product x store FE	✓	×	✓	×
Calendar-month FE	1	1	1	✓
Time FE	×	×	Х	Х
N	16.1 <i>M</i>	16.1 <i>M</i>	16.1 <i>M</i>	16.1 <i>M</i>
Within R ²	18.5%	8.9%	17.3%	9.3%

Robustness to using posted prices

	(1)	(2)	(3)	(4)	
	Increases ($I_{pst,t+24}^+$	Decreases $\left(I_{pst,t+24}^{-}\right)$		
	Reference	Posted	Reference	Posted	
$Gap\ (x_{\mathit{pst}-1})$	-1.75***	-1.46***	1.55***	1.25***	
$Shock\;(ebp_t)$	-0.03***	-0.04***	0.03***	0.03***	
Selection $(x_{pst-1}e\hat{b}p_t)$	-0.00	-0.01	0.01	0.02	
Age (T_{pst-1})	0.02***	0.01***	0.00**	-0.01***	
Product × store FE	✓	✓	✓	1	
Calendar-month FE	✓	✓	✓	✓	
Time FE	X	X	X	×	
N	16.1 <i>M</i>	18.6 <i>M</i>	16.1 <i>M</i>	18.6 <i>M</i>	
Within R^2	18.5%	17.6%	17.3%	14.8%	

Robustness to excluding the Great Recession

	(1) (2) Increases $\left(I_{pst,t+24}^+\right)$		(3) (4) Decreases $\left(I_{pst,t+24}^{-}\right)$	
	2001-2012	` /		2001-2007
$Gap\left(x_{pst-1}\right)$	-1.75***	-1.74***	1.55***	1.50***
Shock (ebp_t)	-0.03***	-0.03***	0.03***	0.02***
Selection $(x_{pst-1} = \hat{b}p_t)$	-0.00	0.06	0.01	-0.06
Age (T_{pst-1})	0.02***	0.02***	0.00**	0.01***
Product x store FE	✓	✓	✓	✓
Calendar-month FE	✓	✓	✓	✓
Time FE	×	×	×	Х
N	16.1 <i>M</i>	9.9 <i>M</i>	16.1 <i>M</i>	9.9 <i>M</i>
Within R^2	18.5%	17.7%	17.3%	16.5%