Environmental subsidies to mitigate transition risk

Eric Jondeau Gregory Levieuge Jean-Guillaume Sahuc Gauthier Vermandel

ECB workshop on "Fiscal policy and climate change" September 2022

MOTIVATIONS

- Commitment to zero emissions between 2050 and 2060 to maintain temperatures below 2°C (Paris Agreement)
- Benchmark models suggest gradual rise in carbon tax necessary to reach this target
- However carbon tax is permanent negative shock to firms cost structure. This will be detrimental to the economy (transition risk)

MOTIVATIONS

- How firms reduce their emissions in the wake of high carbon price?
- ► Firms purchase abatement goods (or green goods) to lower their carbon footprint
- Abatement are goods and services that prevent, limit, minimize or correct environmental damage to water, air, soil
- Accounted in GDP in environmental goods and services sector (~2% of output in EU)

MOTIVATIONS

- Net zero carbon transition requires
 large entry of new varieties with low carbon footprint
- However, the markup is high in the green and renewable energy industry, suggesting a lack of competition
- Need to boost green products creation to reach net zero emissions

THIS PAPER:

Objective:

Could policy actions play a role in boosting the creation of new green products and mitigating transition risk?

► How?

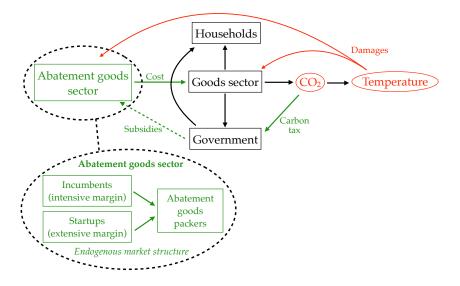
- We develop and estimate an Environmental DSGE model for the world economy

- The model features endogenous green product variety
- We provide projections up to horizon 2100, conditional on CO_2 reduction efforts as in last IPCC report (2021)

- We propose various strategies to subsidize firms operating in the abatement sector

$\mathbf{P}\mathbf{L}\mathbf{A}\mathbf{N}$

2 Model


3 Estimation

4 Model-implied projections

5 Competition-friendly policies

6 Conclusion

MODEL OVERVIEW

FROM DICE TO E-DSGE

We depart from DICE on 3 aspects:

- Rational expectations and explicit micro-foundations: immune to the Lucas critique
- Presence of cyclical shocks (TFP, spending, temperature, etc.) to capture the business cycle component
- Product creation mechanism in abatement sector à la Bilbiie et al. (2012)

Production sector and CO_2 emissions

• Real profits:
$$\Pi_t = Y_t - w_t H_t - \underbrace{p_t^A \Lambda(\mu_t) Y_t}_{\text{abatement cost}} - \underbrace{\tau_t E_t}_{\text{carbon tax}}$$

Production:
$$Y_t = \underbrace{(\Phi(T_t)Z_t\varepsilon_{Z,t})}_{\text{TFP}(\Gamma_t)}H_t$$

Emissions: $E_t = \sigma_t (1 - \mu_t) Y_t$ (σ_t : aggr. CO₂ intensity)

Three important variables:

- Abatement effort μ_t (carbon sequestration, solar/wind plants, electrification, etc) with cost function $\Lambda(\mu_t)$
- ► Damage function $\Phi(T_t)$: Productivity is reduced as CO₂ emissions increase

▶ p_t^A relative price of abatement goods (in DICE, $p_t^A = 1$)

ABATEMENT GOODS SECTOR: FIRM DYNAMICS

• The number of green products N_t :

$$N_{t} = (1 - \delta_{A}) \left(N_{t-1} + N_{t-1}^{E} \right)$$

 δ_A obsoles cence rate, N^E_{t-1} number of new products/ startups

• One firm = one product

 Need to determine the production of *existing firms* and the number of *startups* ABATEMENT GOODS SECTOR: EXISTING FIRMS

► Their production function:

$$N_t Y_t^A = \Gamma_t H_t^A$$

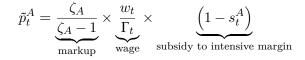
 H_t^A hours worked demand

 In equilibrium, demand from production sector equals supply from existing firms in abatement sector

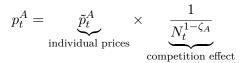
$$\underbrace{\Lambda \ (\mu_t) Y_t}_{\text{Demand from polluting firms}} = \underbrace{N_t Y_t^A}_{\text{Supply from existing firms}}$$

Abatement goods sector: startups

- To start a new green product, an investor maximizes the gain from creating a new product (v_t) against the startup creation costs (X_t)
- ▶ FOC of creation of new green products


with: X_t a sunk cost, s_t^E a subsidy to startups

► FOC on firms value:


$$v_t = \mathbb{E}_t \left[\beta_{t,t+1} (1 - \delta_A) (\Pi_{t+1}^A + v_{t+1}) \right]$$

ABATEMENT GOODS SECTOR: COMPETITION EFFECT

▶ Incumbent production price

► Aggregate price under monopolistic competition:

▶ In what follows: government may implement subsidy policy to incumbents s_t^A or to startups s_t^E

$\mathbf{P}\mathbf{L}\mathbf{A}\mathbf{N}$

1 Introduction

2 Model

3 Estimation

4 Model-implied projections

5 Competition-friendly policies

6 Conclusion

Solution Method

System of equations each period:

$$E_t f\left(y_{t+1}, y_t, y_{t-1}, \varepsilon_t\right) = 0$$

with y vector of endogenous variables, $\varepsilon \sim N(0, \Sigma)$ exogenous shocks

- Extended path (Fair and Taylor, 1983, Adjemian and Juillard, 2014):
 - Assume perfect foresight to obtain path-consistent endogenous variables
 - Solve system recursively under rational expectations $E_t \{\varepsilon_{t+s}\} = 0$ with s > 0
 - ▶ Accurate and fast solution

ESTIMATION

- Filtering: Inversion filter (Fair and Taylor, 1983, Guerrieri and Iacoviello, 2017)
 - \blacktriangleright Extract the sequence of innovations recursively ε_t that matches observed variables
- Bayesian perspective, add prior information on parameters $p(\theta)$
- Simulate posterior distribution using Metropolis-Hasting algorithm

ESTIMATION

- ▶ We estimate 15 parameters using **Bayesian techniques**
- ▶ Inference based on World annual data 1961-2019
- Fully-nonlinear method that takes into account trends (no balanced growth) and nonlinear climate change effects (but assumes certainty equivalence)
 - $\begin{bmatrix} \text{Real output growth rate} \\ \text{Real consumption growth rate} \\ \text{CO}_2 \text{ Emissions growth rate} \\ \text{Temperature anomaly change} \\ \text{Patents growth rate} \end{bmatrix} = \begin{bmatrix} \Delta \log (Y_t) \\ \Delta \log (C_t) \\ \Delta \log (E_t) \\ \Delta T_t \\ \log \left(N_t^E / N_{t-1}^E\right) \end{bmatrix}$

ESTIMATION

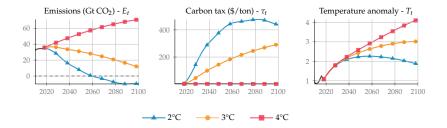
▶ Our model features:

- ► 5 cyclical shocks (from business cycle theory)
- ► 4 deterministic trends (from DICE)
- Our quantitative method endogenously disentangles business cycle vs permanent components in data
- Our methodology also quantifies both parametric and business cycle uncertainties
- ► To our knowledge, **first inference** of macro-climate model with full-information method

$\mathbf{P}\mathbf{L}\mathbf{A}\mathbf{N}$

1 Introduction

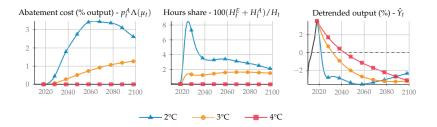
2 Model


3 Estimation

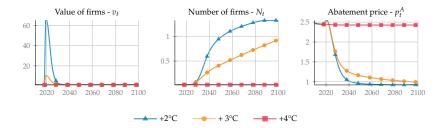
4 Model-implied projections

5 Competition-friendly policies

6 Conclusion


TRANSITION SCENARIOS

Three scenarios for CO_2 emission cuts consistent with IPCC


- Emissions are reduced ...
- ▶ ... through a higher carbon tax ...
- ▶ ... to limit the temperature anomaly
- Each path of emission cuts (μ_t) is matched by adjusting carbon tax (τ_t)

TRANSITION SCENARIOS: MACRO PROJECTIONS

- The emission cut (μ_t) requires a rise in abatement cost ...
- ... and more hours spent in the abatement sector ...
- ... which results in a GDP persistently below its trend

DISSECTING THE FIRM ENTRY MECHANISM

- ▶ As the abatement sector is currently immature, abatement prices are high, which slows down the transition
- ▶ Higher expected profits boost the value of firms ...
- ▶ ... which fosters startup creation ...

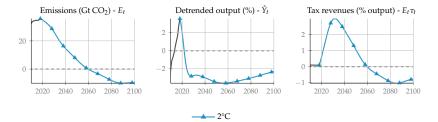
▶ ... and stronger competition reduces abatement prices

$\mathbf{P}\mathbf{L}\mathbf{A}\mathbf{N}$

1 Introduction

2 Model

3 Estimation


4 Model-implied projections

5 Competition-friendly policies

6 Conclusion

Environmental subsidies

 Consistent with the Paris Agreement, we focus on the below 2°C scenario

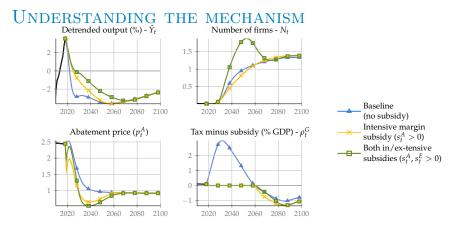
- A quick cut in CO_2 emissions ...
 - ... is very costly in terms of GDP
- Carbon tax revenues can be used to subsidize the abatement sector

Environmental subsidies

- ▶ Let s_t^A and s_t^E denote subsidy rates to existing firms and to startups
- ▶ How should be split the carbon tax revenues across firms?
- Let ς and 1- ς the share of the carbon tax revenues going to startups and existing firms

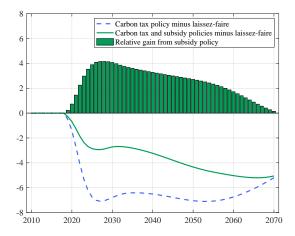
$$s_t^E H_t^E w_t = \varsigma \tau_t E_t$$
$$s_t^A H_t^A w_t = (1 - \varsigma) \tau_t E_t$$

• Optimal sharing rule across firms: $\varsigma = 60\%$ of carbon tax revenues given to startups and $1 - \varsigma = 40\%$ to existing firms


What drives the trade-off?

- Subsidizing **installed firms** only:
 - \rightarrow reduce the cost of a batement in short term
 - \rightarrow but impediment to entry, high rents in medium term
- Subsidizing startups only:
 - \rightarrow firm entry is gradual process: limited effect in short term
 - \rightarrow boost competition and reduce price in medium term

>


• Welfare increases in ς as long as

future gains from competition current loss from short term higher abatement price

- Subsidy to startups boosts the number of firms and competition
- ... reduces abatement prices
 - ... and reduces the GDP loss

$\operatorname{GDP}\,\operatorname{gain}$

Subsidy policy saves about \$2.5 trillion GDP per year

$\mathbf{P}\mathbf{L}\mathbf{A}\mathbf{N}$

1 Introduction

2 Model

3 Estimation

4 Model-implied projections

5 Competition-friendly policies

6 Conclusion

- ▶ **Product creation matters** to mitigate transition risk
- Subsidizing the creation of new green products improves welfare
- This policy would save up to \$2.5 trillion in world GDP each year