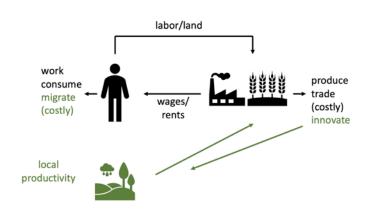
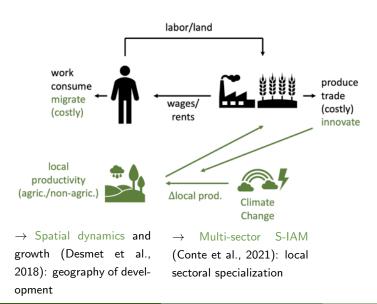
On the Geographic Implications of Carbon Taxes

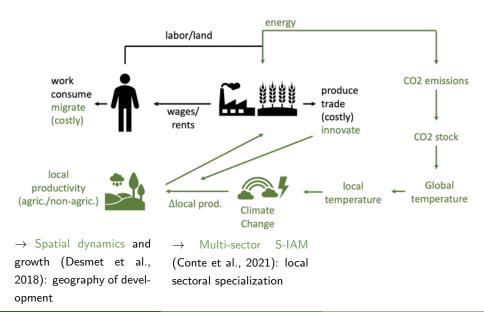
Bruno Conte, *Università di Bologna* Klaus Desmet, *SMU* Esteban Rossi-Hansberg, *University of Chicago*

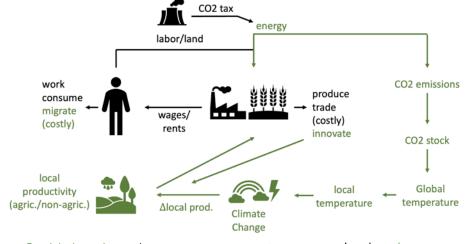
September 2022


Environmental policy and carbon taxes

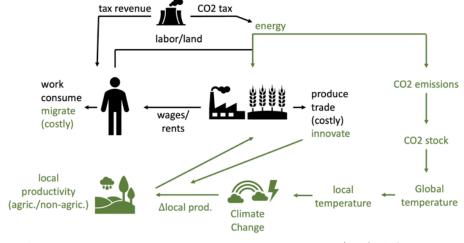
- Environmental policies are needed to mitigate global warming
 - Standard Pigouvian logic says that a carbon tax is first-best
 - ► Carbon tax can close the gap between social and private cost of carbon
 - ► Other policies that effectively price carbon are similar (e.g. ETS)
- (Unilateral) carbon taxes are increasingly common
 - ► France, Canada, Netherlands, Singapore, Sweden, Switzerland, UK, ...
 - ► Economic and carbon leakage, and hence often appear ineffective
- This argument ignores some of the spatial effects
 - ► A carbon tax affects the spatial distribution of economic activity
 - Pre-existing spatial equilibrium need not be efficient
 - ► Spatial reallocation might improve global efficiency and welfare


The spatial effects of carbon taxes in the EU


- Carbon tax and rebate scheme affects
 - ► The geography of comparative and absolute advantage
 - ► The spatial distribution of income, and hence migration flows
- Use two-sector dynamic spatial integrated assessment model (S-IAM) to evaluate the impact of an EU carbon tax rebated locally
 - ► Non-agricultural EU core gains in relative terms
 - ► EU economy expands and attracts more immigrants
 - Global efficiency and welfare improve
- Unilateral carbon tax and rebate scheme corrects spatial inefficiency
 - Acts as place-based policy that redistributes income towards high-productivity non-agricultural regions
 - Different results with alternative rebating schemes


1. Framework and EU carbon tax simulations

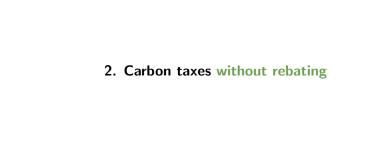
→ Spatial dynamics and growth (Desmet et al., 2018): geography of development



→ Spatial dynamics and growth (Desmet et al., 2018): geography of development

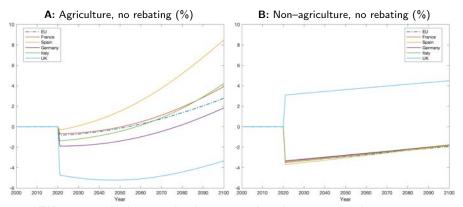
→ Multi-sector S-IAM (Conte et al., 2021): local sectoral specialization

→ Local carbon taxes: trade off between distortion (tax) and income change (transfer) • model


- → Spatial dynamics and growth (Desmet et al., 2018): geography of development
- → Multi-sector S-IAM (Conte et al., 2021): local sectoral specialization
- → Local carbon taxes: trade off between distortion (tax) and income change (transfer) • model

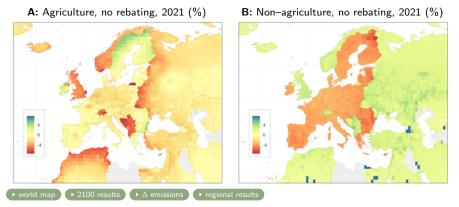
Local effects of carbon taxes

- Carbon tax: ↑ marginal cost of local producers, ↓ local revenue (and income per capita)
- Once carbon tax is rebated, income per capita may increase if
 - ► Carbon tax is small enough to avoid large distortionary effects
 - ightharpoonup Trade elasticity, heta, is low enough to limit initial drop in income
- $\bullet \ \ \mathsf{Migration} \ \ \mathsf{elasticity}, \ \Omega \colon \uparrow \ \mathsf{in} \ \ \mathsf{income} \ \leftrightarrow \mathsf{expansion} \ \ \mathsf{of} \ \ \mathsf{local} \ \ \mathsf{economy}$
 - Reminiscent of optimal tariff argument (rebate benefits only locals)
- Larger effects in locations specialized in energy-intensive industries
 - Static and dynamic externalities imply inefficient spatial equilibrium
 - ► Spatial reallocation: potential to improve global efficiency and welfare


Carbon taxes in the EU: simulations

- We simulate evolution the global economy over the 21st century with and without carbon taxes
 - ► Without taxes: evolution of global economy and climate (RCP 8.5)
- Carbon tax effects: (dis)aggregate sectoral output, economy size, population, welfare, emissions, ...
- Different tax rebating schemes
 - ► No rebating: isolates distortive effect of the carbon tax
 - ► Local rebating: rebate revenues per capita to the local population

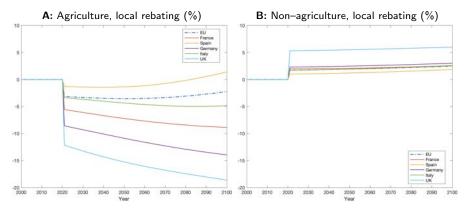
Sectoral specialization


% Change in sectoral output due to carbon taxes, 2021-2100

- EU output declines in both sectors, but less in agriculture
- UK, in comparison gains comparative advantage in non-agriculture

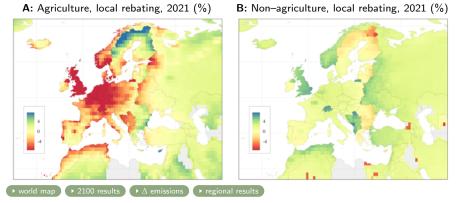
Sectoral specialization in 2021 without rebating

% Change in sectoral output due to carbon taxes, 2021

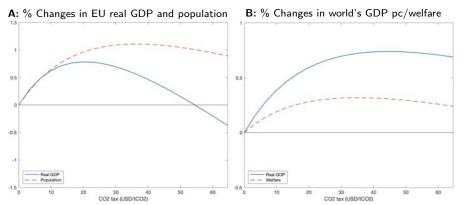


- EU periphery is gaining comparative advantage in agriculture
- Border effect: negative for agriculture, ambiguous for non-agriculture
- EU losses (GDP, population and welfare) increase with the tax ▶ details

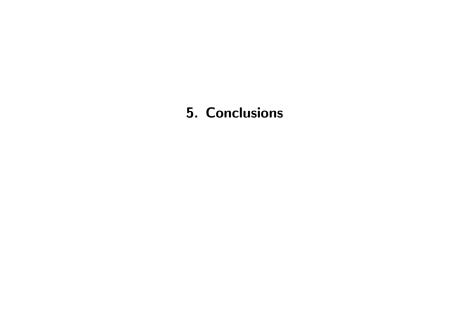
Sectoral specialization over time with local rebating


% Change in sectoral output due to carbon taxes, 2021-2100

- With local rebating, agriculture falls more in Europe's core
- Non-agriculture grows everywhere in EU, especially in the core


Sectoral specialization 2021 with local rebating

% Change in sectoral output due to carbon taxes, 2021



- Core and border regions switch from agriculture to non-agriculture
- Border effect: driven by EU periphery's change in specialization
- EU gains (real GDP and population), world is better off

Effects of different carbon taxes: EU and worldwide (2021)

- With local rebating, positive effects on real GDP for carbon taxes up to 50 USD/tCO₂ (EU welfare falls due to migration) no reb. θ . Ω
- World welfare increases due to more efficient distribution of economic activity (more people live in more productive regions, like the EU)

Concluding remarks

- A unilateral carbon tax in the EU with local rebating
 - Acts as a place-based policy that favors high-productivity core
 - Attracts migrants and expands EU economy
 - ► Improves global efficiency and welfare
- More generally, if rebating benefits high-productivity areas, then a unilateral carbon tax may get us closer to efficient spatial equilibrium
- Cost of carbon tax can be avoided with right tax and rebate scheme
 - Local rebating is the most natural way to rebate
- Alternative rebating schemes yield different results
 - ► E.g., rebating to developing countries
 - ► Keeps more people in less productive areas
 - ▶ Decreases spatial inequality, but worsens global welfare

Appendix

Endowments & preferences • back

- Based on Conte, Desmet, Nagy and Rossi-Hansberg (2021)
- World economy occupies a two-dimensional surface
 - $ightharpoonup \bar{L}$ agents, each supplying one unit of labor
- \bullet Period utility of agent j residing in location r at time t

$$U_{t}^{j}\left(\mathbf{r}_{-},\mathbf{r}\right)=\bar{\chi}\mathbf{a}_{t}\left(\mathbf{r}\right)\prod_{i=1}^{I}\left[\int_{0}^{1}c_{it}^{\omega}\left(\mathbf{r}\right)^{\rho}d\omega\right]^{\frac{\chi_{i}}{\rho}}\varepsilon_{t}^{j}\left(\mathbf{r}\right)\prod_{s=1}^{t}m\left(\mathbf{r}_{s-1},\mathbf{r}_{s}\right)^{-1}$$

- $ightharpoonup arepsilon_t^j(r)$ is location preference shock that acts as a dispersion force
- Amenities are such that $a_t(r) = \bar{a}(r) (\bar{L}_t(r) / H(r))^{-\lambda}$ and so also act as a dispersion force
- Moving costs
 - $m(r,s) = m_1(r)m_2(s)$
 - ▶ Migrants only pay the flow utility cost while in the host location
 - ► Simplifies forward-looking migration decision to a static one

Technology Dack

ullet Firm produces variety ω in sector i in location r at time t according to

$$q_{it}^{\omega}\left(r\right) = L_{\phi,it}^{\omega}\left(r\right)^{\gamma_{i}} z_{it}^{\omega}\left(r\right) L_{it}^{\omega}\left(r\right)^{\mu_{i}} E_{it}^{\omega}\left(r\right)^{\sigma_{i}} H_{it}^{\omega}\left(r\right)^{1 - \gamma_{i} - \mu_{i} - \sigma_{i}}$$

• Productivity shifter $z_{it}^{\omega}(r)$ drawn from Fréchet with average

$$Z_{it}(r) = \tau_{it}(r) g_i(T_t(r)) \left(\frac{\bar{L}_{it}(r)}{H_{it}(r)}\right)^{\alpha_i}$$

where local density acts as an agglomeration force

► A location's fundamental productivity in sector *i* evolves according to

$$\tau_{it}\left(r\right) = L_{\phi,i,t-1}\left(r\right)^{\gamma_i} \left[\int_{S} e^{-\aleph dist\left(r,s\right)} \tau_{i,t-1}\left(s\right) ds \right]^{1-\delta} \tau_{i,t-1}\left(r\right)^{\delta}$$

- Local technology diffuses locally to potential entrants
 - ► Competition for land implies that firm dynamic innovation decision simplifies to static optimization problem
- Trade cost such that trade flows satisfy standard gravity equation

Global warming Phack

Bell-shaped sector-specific temperature discount on productivity

$$g_{i}\left(T_{t}\left(r
ight)
ight) = \exp\left[-rac{1}{2}\left(rac{T_{t}\left(r
ight) - g_{i}^{opt}}{g_{i}^{var}}
ight)^{2}
ight]$$

- Simple world energy market with constant supply elasticity
- Carbon cycle
 - ► Energy used in production causes emissions that affect carbon stock

$$K_t = \varepsilon_1 K_{t-1} + \varepsilon_2 E_{t-1}$$

► Carbon stock affects global temperature

$$T_t = T_{t-1} + \nu (K_t - K_{t-1})$$

• Global temperature affects local temperature

$$T_t(r) - T_{t-1}(r) = \xi(r) (T_t - T_{t-1})$$

Carbon taxes back

- Carbon tax increases the energy price e_t by a proportion Y(r)
 - A firm in r producing variety ω of sector i minimizes

$$p_{it}^{\omega}(r,r)q_{it}^{\omega}(r) - w_t(r)\left[L_{it}^{\omega}(r) + L_{\phi it}^{\omega}(r)\right] - (1 + Y_t(r))e_tE_{it}^{\omega}(r) - R_t(r)H_{it}^{\omega}(r)$$

Its marginal cost is

$$mc_{it}(r) = \kappa_i w_t(r)^{\gamma_i + \mu_i} R_t(r)^{1 - \gamma_i - \mu_i - \sigma_i} e_t^{\sigma_i} (1 + Y_t(r))^{\sigma_i}$$

- Carbon tax affects sectors based on their energy intensity σ_i
- Carbon tax revenues are either
 - ► Lost
 - ▶ Rebated: locally, EU uniform, developing countries

Quantification: Economics • back

- Discretize the world into 64,800 $1^{\circ} \times 1^{\circ}$ cells
- Data
 - ► Bilateral trade costs
 - ► Population
 - ► Total output and agricultural output
 - ► Well-being
- Recover
 - Agricultural and non-agricultural productivity
 - Amenities
- Moving costs
 - Identified by making local changes in population between first five periods coincide with data

Quantification: Climate Phack

- Parameters of carbon cycle such that
 - ▶ 1200 GTC increase in stock of carbon by 2100
 - ▶ 3.7°C global temperature increase by 2100
 - ► Consistent with Representative Concentration Pathway (RCP) 8.5
- Local sensitivity to change in global temperature is heterogeneous
 - ▶ Predicted local and global temperatures from 2000 to 2100 to estimate

$$T_t(r) - T_{t-1}(r) = \xi(r) (T_t - T_{t-1}) + v_t(r)$$

- Temperature discount in agriculture
 - ▶ Optimal annual average temperature 19.9°C from agronomy studies
 - ► Variance parameter so that 0.1% of world agricultural production occurs in locations with a discount factor below 0.01
- Temperature discount in non-agriculture
 - ► Calibrate to observed relation between temperature and the model-generated non-agricultural productivity across all grid-cells

Quantification: Sectoral temperature discounts • back

Quantification: Energy shares and CO2 taxes

Energy shares

- ► Agriculture: 0.04 (Schnepf, 2004; Australian Bureau of Statistics, 2021)
- ► Non-agriculture: 0.07
 - \star Energy share in total GDP $\sim 0.056 0.08$ (King et al., 2015; Grubb et al., 2018)
 - ★ Combine with energy share in agriculture (0.04) and share of non-agriculture in GDP (0.949)
 - ★ Yields non-agricultural energy share between 0.057 and 0.082

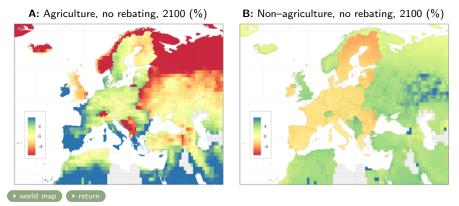
Carbon taxes

- ► Swedish tax ~ 140 US\$/tCO₂ (Hassler et al. 2020)
- ► Smaller in EU in general: France 48 US\$/tCO₂, Germany 27 US\$/tCO₂, Spain 16 US\$/tCO2, Italy 0 US\$/tCO2 (Worldbank)
- ▶ We use a carbon tax of 40 US\$/tCO₂ as our baseline
- $ightharpoonup Y(r) imes e_0 = 40 \text{ USD/tCO}_2 \rightarrow Y(r) = 40/e_0$
- Y(r) = 0.8632 (86.32%)

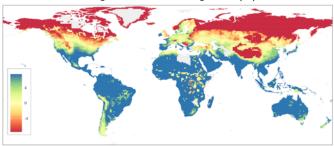
Simulation • back

- Allocation in t allows deriving fundamental productivities in t+1
- ullet Energy use in t and carbon cycle gives global temperature in t+1
- ullet Determine local temperatures in t+1
- With fundamental productivities and local temperatures in t+1, solve for all other variables in t+1
- Model can be simulated forward for as many periods as needed

A: Agriculture, no rebating, 2021 (%)



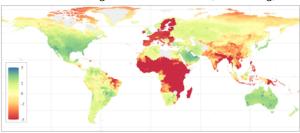
B: Non-agriculture, no rebating, 2021 (%)


Sectoral specialization in 2100 without rebating

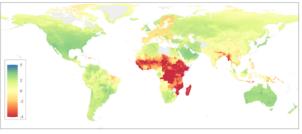
% Change in sectoral output due to carbon taxes, 2100

- Effects amplify over time via investments and technological diffusion
- By 2100, effect on climate is present too: positive effect in southern areas, negative effect in northern areas

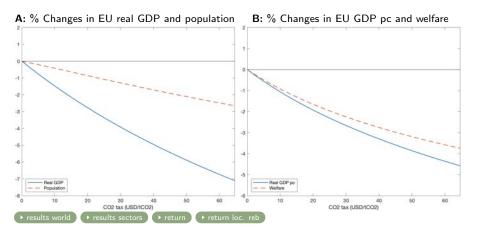
A: Agriculture, no rebating, 2100 (%)



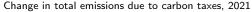
B: Non-agriculture, no rebating, 2100 (%)

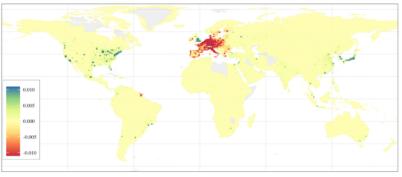


Real GDP and population changes in 2100


A: Real GDP % changes due to carbon taxes, no rebating, 2100

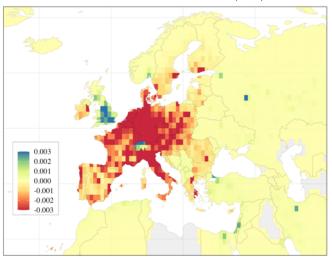
 $\boldsymbol{B}\text{:}$ Population % changes due to carbon taxes, 2100




Effects on the EU of different carbon taxes, 2021

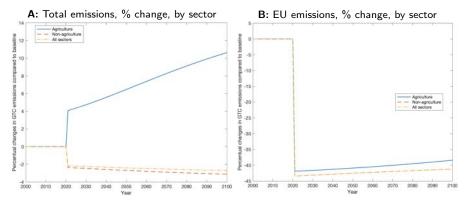
• Larger negative effects on real GDP, population and welfare, the larger the carbon tax

Emissions changes in 2021, GtCO2

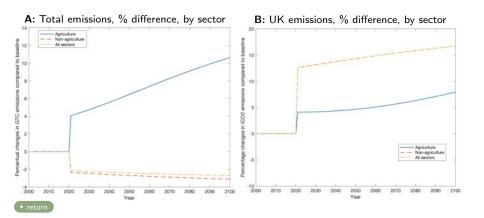


• World emissions: -2.2% in 2021 and -2.7% in 2100

• EU emissions: -43.4% in 2021 and -41.2% in 2100


Emissions changes in Europe in 2021

Differences in total emissions, 2021 (GTC)

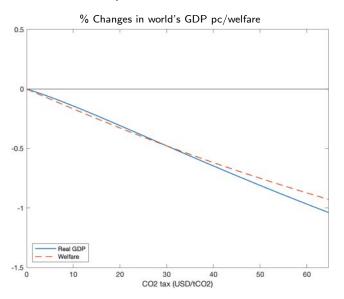


Emissions over time: World vs EU

- Agriculture output grows in less efficient areas
- Non-agricultural emissions fall due to decrease in world output

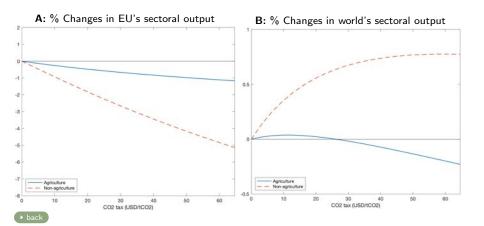
Emissions over time: World vs UK

% Change in 2021 and 2100 without rebating carbon tax revenues


	World		Е	U	U	S	Jap	oan	S	SA As		sia
	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100
Δ Real GDP	-0.65	-0.67	-4.95	-4.32	2.03	3.11	1.88	2.91	-3.11	-6.1	-1.34	-1.6
∆ Real GDP pc	-0.65	-0.67	-3.3	-3.18	-0.2	0.1	-0.27	0.03	-0.96	-2.36	-1.2	-1.4
∆ Welfare	-0.62	-0.57	-2.76	-2.86	-0.93	-0.84	-0.97	-0.88	-2.51	-3.53	-1.72	-2.1
∆ Population	0	0	-1.71	-1.17	2.23	3	2.16	2.87	-2.17	-3.83	-0.15	-0.
∆ Agricultural Output	-0.07	0.86	-0.83	2.83	-0.07	0.63	-0.07	1.93	-0.46	1.56	0.58	1.9
∆ Non-agric. Output	0.74	1.94	-3.44	-1.91	2.75	4.69	2.41	4.11	0.25	0.67	0.63	1.9
Δ Emissions	-2.16	-2.71	-43.42	-41.24	12.13	16.83	11.77	16.19	9.36	12.36	9.83	13

Notes: Asia includes Bangladesh, Brunei, China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar Malavsia. Philippines. Thailand. and Vietnam.

► A Real sectoral outputs

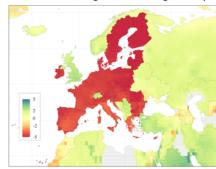

→ return

Effects on sectoral output of different carbon taxes, 2021

Effects on the World of different carbon taxes, 2021

Effect on GDP per capita

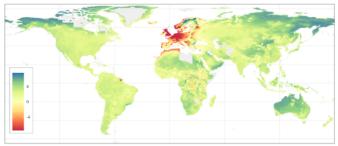
Real GDP pc % changes due to carbon taxes, 2100



▶ return

Effect on real GDP in Europe

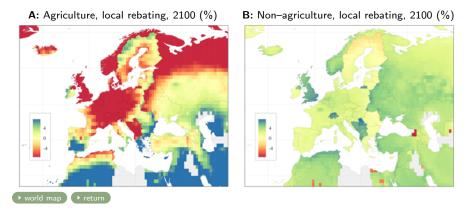
A: Real GDP changes, no rebating, 2021 (%) B: Real GDP changes, no rebating, 2100 (%)


% Change in 2021 and 2100 without rebating carbon tax revenues

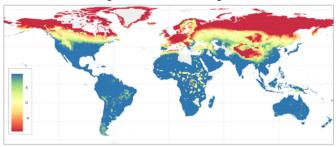
	World		World EU US Japan		oan	SSA		A	sia			
	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100
A A . II. I	0.07	0.00	0.00	0.00	0.07	0.60	0.07	1.00	0.46	1.50	0.50	1.0
Δ Agricultural output	-0.07	0.86	-0.83	2.83	-0.07	0.63	-0.07	1.93	-0.46	1.56	0.58	1.96
Δ Non-agric. output	0.74	1.94	-3.44	-1.91	2.75	4.69	2.41	4.11	0.25	0.67	0.63	1.9
∆ Agricultural prices	0.18	2.29	0.08	2.25	0.31	2.45	0.2	2.39	0.12	1.99	0.08	1.5
Δ Non-agric. prices	0.42	1.06	1.36	2.06	0.41	1.08	0.18	0.66	0.35	0.93	0.07	0.
$\Delta P_A/P_M$	-0.24	1.22	-1.26	0.19	-0.1	1.35	0.02	1.72	-0.23	1.05	0.01	1.:
Δ Real agricultural output	-0.08	-1.16	-0.82	0.81	-0.47	-2.26	-0.29	-0.67	-0.56	-0.29	0.49	-0.1
Δ Real non-agric. output	-0.15	0.02	-4.89	-4.1	2.19	3.4	2.12	3.39	0.43	0.34	0.83	1.

Notes: Asia includes Bangladesh, Brunei, China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar Malaysia, Philippines, Thailand, and Vietnam.

A: Agriculture, local rebating, 2021


B: Non-agriculture, local rebating, 2021

September 2022

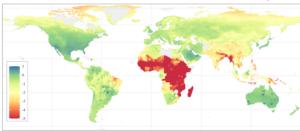

Sectoral specialization 2100 with local rebating

% Change in sectoral output due to carbon taxes, 2100

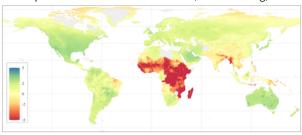


- Comparative advantage changes amplify over time
- Border benefits from more investment in non-agriculture

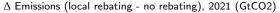
A: Agriculture, local rebating, 2100

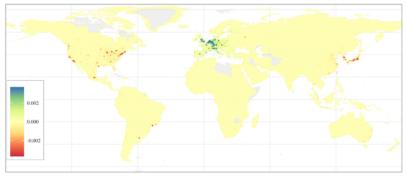


B: Non-agriculture, local rebating, 2100



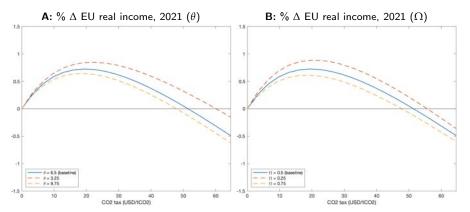
Real GDP pc and population changes in 2100


A: Real GDP pc % Δ due to carbon taxes, local rebating, 2100



B: Population % Δ due to carbon taxes, local rebating, 2100

Change in emissions: local rebating vs no rebating

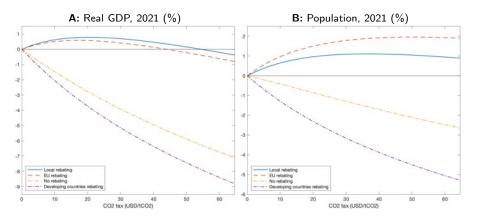

% Changes in 2021 and 2100 when locally rebating carbon tax revenues

	Wo	orld	E	U	U	S	Jap	oan	S	SA	A	sia
	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100
Panel A: No rebating												
∆ Real GDP	-0.65	-0.67	-4.95	-4.32	2.03	3.11	1.88	2.91	-3.11	-6.1	-1.34	-1.62
∆ Real GDP pc	-0.65	-0.67	-3.3	-3.18	-0.2	0.1	-0.27	0.03	-0.96	-2.36	-1.2	-1.42
Δ Welfare	-0.62	-0.57	-2.76	-2.86	-0.93	-0.84	-0.97	-0.88	-2.51	-3.53	-1.72	-2.11
Δ Population	0	0	-1.71	-1.17	2.23	3	2.16	2.87	-2.17	-3.83	-0.15	-0.2
∆ Agricultural Output	-0.07	0.86	-0.83	2.83	-0.07	0.63	-0.07	1.93	-0.46	1.56	0.58	1.96
Δ Non-agric. Output	0.74	1.94	-3.44	-1.91	2.75	4.69	2.41	4.11	0.25	0.67	0.63	1.97
Δ Emissions	-2.16	-2.71	-43.42	-41.24	12.13	16.83	11.77	16.19	9.36	12.36	9.83	13.8
Panel B: Local rebating												
Δ Real GDP	0.74	1.25	0.47	1.16	1.72	2.69	1.52	2.48	-3.43	-6.46	-1.46	-1.8
Δ Real GDP pc	0.74	1.25	-0.63	-0.5	-0.22	0.07	-0.31	0	-0.96	-2.37	-1.14	-1.34
Δ Welfare	0.32	0.77	-1.01	-1.08	-0.84	-0.73	-0.89	-0.79	-2.42	-3.41	-1.57	-1.94
Δ Population	0	0	1.1	1.66	1.94	2.61	1.84	2.47	-2.5	-4.19	-0.33	-0.4
Δ Agricultural Output	1.34	2.74	-3.07	-2.21	2.47	5.63	2.96	6.96	1.13	2.86	2.35	4.1
Δ Non-agric. Output	1.37	2.76	1.76	2.5	1.34	2.97	0.46	2.41	-0.46	0.15	-0.64	0.5
Δ Emissions	-2.15	-2.66	-40.46	-38.73	10.55	14.7	9.6	14.08	8.72	11.62	8.76	12.5

Notes: Asia includes Bangladesh, Brunei, China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar Malaysia, Philippines, Thailand, and Vietnam.

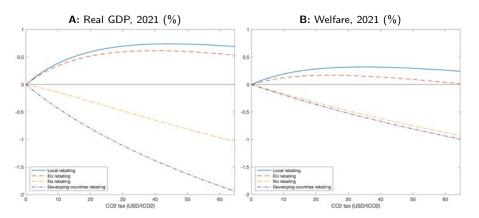
Effects of trade elasticity and preference heterogeneity

- ullet Lower trade elasticity heta: smaller negative effect on local revenues
- ullet Lower preference heterogeneity Ω (higher mig. elasticity): greater influx of migrants



4. Carbon taxes with	EU or developing	countries rebating

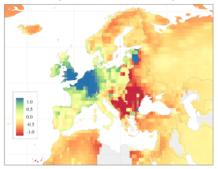
EU/developing countries rebating

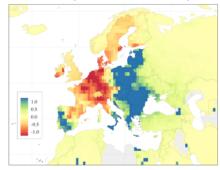

- We consider two additional forms of rebating the revenue of EU carbon taxes
 - Uniform EU rebating where we rebate total EU carbon tax revenue equally across the EU population
 - ► Developing countries rebating where we rebate total EU carbon tax revenue equally across the developing world ► details
- Goal is to understand how rebating changes sectoral specialization and population flows

Effects on the EU of different carbon taxes, 2021

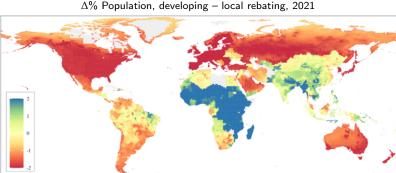
- EU rebating: smaller expansion of the EU
- Developing countries rebating: contraction of the EU

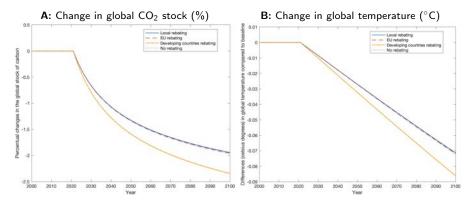
Effects on the world of different carbon taxes, 2021




- EU rebating: smaller positive welfare effects
- Developing countries rebating: benefits sub-Saharan Africa and Asia, but hurts the world by keeping people from migrating

Sectoral specialization 2021: EU vs local rebating


B: % Δ Non-agric., EU – local rebating, 2021

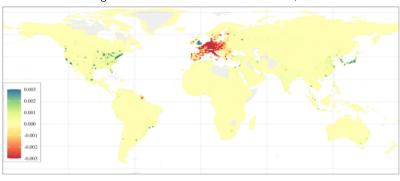

- With EU rebating, more resources flow to EU periphery and so it specializes more in non-agriculture
- Less concentration in the core, which leads to smaller world gains

Sectoral specialization 2021: Developing vs local rebating

 Δ % Population, developing – local rebating, 2021

Evolution of global CO₂ stock and temperature

- The gains from local rebating (compared to no rebating) does not come at cost of higher emissions
- Developing countries rebating leads to larger reductions in CO₂


% Changes in 2021 and 2100: different rebating schemes A Real sectoral outputs

	Wo	orld	Е	U	U	IS	Jap	oan	S	5A	As	sia
	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100
Panel A: Local rebating												
Δ Real GDP	0.74	1.25	0.47	1.16	1.72	2.69	1.52	2.48	-3.43	-6.46	-1.46	-1.8
Δ Real GDP pc	0.74	1.25	-0.63	-0.5	-0.22	0.07	-0.31	0	-0.96	-2.37	-1.14	-1.3
Δ Welfare	0.32	0.77	-1.01	-1.08	-0.84	-0.73	-0.89	-0.79	-2.42	-3.41	-1.57	-1.9
Δ Population	0	0	1.1	1.66	1.94	2.61	1.84	2.47	-2.5	-4.19	-0.33	-0.4
Δ Agricultural Output	1.34	2.74	-3.07	-2.21	2.47	5.63	2.96	6.96	1.13	2.86	2.35	4.1
Δ Non-agric. Output	1.37	2.76	1.76	2.5	1.34	2.97	0.46	2.41	-0.46	0.15	-0.64	0.5
Δ Emissions	-2.15	-2.66	-40.46	-38.73	10.55	14.7	9.6	14.08	8.72	11.62	8.76	12.5
Panel B: EU rebating												
Δ Real GDP	0.62	1.12	0.13	0.87	1.69	2.65	1.49	2.44	-3.49	-6.55	-1.52	-1.8
Δ Real GDP pc	0.62	1.12	-1.75	-1.49	-0.19	0.1	-0.28	0.03	-0.94	-2.36	-1.12	-1.3
Δ Welfare	0.14	0.46	-2.51	-2.67	-0.8	-0.69	-0.85	-0.74	-2.39	-3.38	-1.53	-1.
Δ Population	0	0	1.92	2.4	1.89	2.55	1.78	2.41	-2.58	-4.3	-0.4	-0.5
Δ Agricultural Output	1.22	2.62	-2.85	-1.97	2.33	5.47	2.81	6.84	1.01	2.78	2.22	4.0
Δ Non-agric. Output	1.25	2.65	1.39	2.24	1.34	2.94	0.45	2.35	-0.51	0.09	-0.68	0.4
Δ Emissions	-2.17	-2.68	-40.63	-38.84	10.62	14.75	9.66	14.1	8.73	11.63	8.77	12.5
Panel C: Developing rebating												
Δ Real GDP	-1.38	-1.85	-6.37	-6.39	0.53	0.97	0.39	0.79	1.44	3.45	1.26	2.2
Δ Real GDP pc	-1.38	-1.85	-2.59	-2.13	0.55	1.24	0.48	1.19	0.78	2.18	0.82	1.6
Δ Welfare	-0.67	-0.76	-1.32	-0.76	0.54	1.35	0.5	1.31	0.8	2.09	0.74	1.7
Δ Population	0	0	-3.88	-4.35	-0.01	-0.26	-0.09	-0.39	0.65	1.25	0.44	0.6
Δ Agricultural Output	-1.46	-1.12	-1.05	2.32	-0.37	-0.91	0.13	-0.13	-1.56	3.92	-1.24	-0.2
Δ Non-agric. Output	-1.44	-1.08	-6.28	-5.66	-0.02	0.97	-0.18	0.85	0.9	2.93	0.76	2.4
Δ Emissions	-2.57	-3.25	-44.14	-42.19	10.95	15.26	10.77	15.12	11.74	17.51	11.56	16.4

Notes: Asia includes Bangladesh, Brunei, China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar Malaysia, Philippines, Thailand, and Vietnam.

Change in emissions with local rebating

Change in total emissions due to carbon taxes, 2021

▶ return

% Change in 2021 and 2100 locally rebating carbon tax revenues

	Wo	rld	Е	U	U	S	Jap	oan	S	SA.	As	sia
	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100
Panel A: No rebating												
Δ Agricultural output	-0.07	0.86	-0.83	2.83	-0.07	0.63	-0.07	1.93	-0.46	1.56	0.58	1.96
Δ Non-agric. output	0.74	1.94	-3.44	-1.91	2.75	4.69	2.41	4.11	0.25	0.67	0.63	1.9
Δ Agricultural prices	0.18	2.29	0.08	2.25	0.31	2.45	0.2	2.39	0.12	1.99	0.08	1.9
Δ Non-agric. prices	0.42	1.06	1.36	2.06	0.41	1.08	0.18	0.66	0.35	0.93	0.07	0.
$\Delta P_A/P_M$	-0.24	1.22	-1.26	0.19	-0.1	1.35	0.02	1.72	-0.23	1.05	0.01	1.3
Δ Real agricultural output	-0.08	-1.16	-0.82	0.81	-0.47	-2.26	-0.29	-0.67	-0.56	-0.29	0.49	-0.1
Δ Real non-agric. output	-0.15	0.02	-4.89	-4.1	2.19	3.4	2.12	3.39	0.43	0.34	0.83	1.0
Panel B: Local rebating												
Δ Agricultural output	1.34	2.74	-3.07	-2.21	2.47	5.63	2.96	6.96	1.13	2.86	2.35	4.1
Δ Non-agric. output	1.37	2.76	1.76	2.5	1.34	2.97	0.46	2.41	-0.46	0.15	-0.64	0.5
∆ Agricultural prices	0.13	2.12	1.08	2.43	-0.03	2.11	-0.54	1.86	0.2	1.94	-0.17	1.6
Δ Non-agric. prices	0.52	1.1	3.77	3.87	-0.52	0	-1.13	-0.37	0.58	1.14	-0.23	0.4
$\Delta P_A/P_M$	-0.38	1.02	-2.6	-1.38	0.49	2.11	0.6	2.23	-0.37	0.8	0.05	1.2
Δ Real agricultural output	1.47	0.9	-4.09	-4.37	2.49	3.14	3.52	4.87	0.86	0.97	2.51	2.2
Δ Real non-agric. output	0.29	0.62	-2.67	-1.99	1.88	3	1.73	2.95	-0.09	-0.14	0.14	0.6

Notes: Asia includes Bangladesh, Brunei, China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar Malaysia, Philippines, Thailand, and Vietnam.

Global rebating

Countries benefited by the rebating of CO2 tax revenues Preturn

Country	Country	Country	Country
Albania	Costa Rica	Korea (North)	Peru
Algeria	Côte d'Ivoire	Kyrgyzstan	Philippines
American Samoa	Djibouti	Laos	Puerto Rico
Angola	Dominican Republic	Lebanon	Réunion
Anguilla	Ecuador	Lesotho	Rwanda
Argentina	Egypt	Liberia	Senegal
Armenia	El Salvador	Madagascar	Serbia
Azerbaijan	Equatorial Guinea	Malawi	Sierra Leone
Bangladesh	Eritrea	Malaysia	Singapore
Belarus	Eswatini	Maldives	Solomon Island
Belize	Ethiopia	Mali	South Africa
Benin	Fiji	Mauritania	Sri Lanka
Bhutan	Gabon	Mayotte	Sudan
Bolivia, Plurinational State of	Gambia	Mexico	Suriname
Bosnia and Herzegovina	Ghana	Micronesia	Syria
Botswana	Grenada	Moldova	Tanzania
Brazil	Guadeloupe	Mongolia	Thailand
Brunei Darussalam	Guatemala	Morocco	Togo
Burkina Faso	Guinea	Mozambique	Tonga
Burundi	Guinea-Bissau	Myanmar	Tunisia
Cabo Verde	Guyana	Namibia	Turkmenistan
Cambodia	Haiti	Nepal	Uganda
Cameroon	Honduras	Nicaragua	Ukraine
Central African Republic	India	Niger	Uruguay
Chad	Indonesia	Nigeria	Uzbekistan
Chile	Iran	North Macedonia	Vanuatu
China	Jamaica	Pakistan	Venezuela
Colombia	Jordan	Panama	Viet Nam
Congo	Kenya	Papua New Guinea	Yemen
Congo DRC	Kiribati	Paraguay	Zambia

% Changes in 2021 and 2100: different rebating schemes Preturn

	Wo	orld	Е	U	U	S	Jap	oan	S	5A	A:	sia
	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100	2021	2100
Panel A: Local rebating												
Δ Agricultural output	1.34	2.74	-3.07	-2.21	2.47	5.63	2.96	6.96	1.13	2.86	2.35	4.14
Δ Non-agric. output	1.37	2.76	1.76	2.5	1.34	2.97	0.46	2.41	-0.46	0.15	-0.64	0.55
Δ Agricultural prices	0.13	2.12	1.08	2.43	-0.03	2.11	-0.54	1.86	0.2	1.94	-0.17	1.67
Δ Non-agric. prices	0.52	1.1	3.77	3.87	-0.52	0	-1.13	-0.37	0.58	1.14	-0.23	0.44
$\Delta P_A/P_M$	-0.38	1.02	-2.6	-1.38	0.49	2.11	0.6	2.23	-0.37	0.8	0.05	1.23
Δ Real agricultural output	1.47	0.9	-4.09	-4.37	2.49	3.14	3.52	4.87	0.86	0.97	2.51	2.21
Δ Real non-agric. output	0.29	0.62	-2.67	-1.99	1.88	3	1.73	2.95	-0.09	-0.14	0.14	0.63
Panel B: EU rebating												
Δ Agricultural output	1.22	2.62	-2.85	-1.97	2.33	5.47	2.81	6.84	1.01	2.78	2.22	4.05
Δ Non-agric. output	1.25	2.65	1.39	2.24	1.34	2.94	0.45	2.35	-0.51	0.09	-0.68	0.49
Δ Agricultural prices	0.12	2.14	1.18	2.52	-0.03	2.12	-0.55	1.85	0.18	1.95	-0.19	1.67
Δ Non-agric. prices	0.5	1.09	3.73	3.89	-0.5	0	-1.13	-0.38	0.55	1.13	-0.24	0.43
$\Delta P_A/P_M$	-0.36	1.04	-2.45	-1.32	0.47	2.12	0.58	2.25	-0.36	0.81	0.05	1.24
Δ Real agricultural output	1.34	0.78	-4.12	-4.5	2.35	2.98	3.38	4.74	0.76	0.9	2.41	2.13
Δ Real non-agric. output	0.21	0.55	-2.85	-2.14	1.85	2.97	1.7	2.91	-0.13	-0.18	0.11	0.59
Panel C: Global rebating												
Δ Agricultural output	-1.46	-1.12	-1.05	2.32	-0.37	-0.91	0.13	-0.13	-1.56	3.92	-1.24	-0.29
Δ Non-agric. output	-1.44	-1.08	-6.28	-5.66	-0.02	0.97	-0.18	0.85	0.9	2.93	0.76	2.41
Δ Agricultural prices	-0.46	1.54	-0.85	1.36	-0.42	1.68	-0.39	1.89	-0.42	1.23	-0.38	1.36
Δ Non-agric. prices	-0.53	-0.06	0.02	0.46	-0.71	-0.33	-0.78	-0.41	-0.46	0.03	-0.57	-0.07
$\Delta P_A/P_M$	0.07	1.6	-0.87	0.9	0.29	2.02	0.39	2.31	0.04	1.19	0.19	1.43
Δ Real agricultural output	-0.99	-2.34	-0.1	1.21	0.05	-3.03	0.54	-2.11	-1.11	2.83	-0.87	-1.68
Δ Real non-agric. output	-1.36	-1.75	-6.31	-6.11	0.73	1.33	0.66	1.37	1.28	2.8	1.29	2.46

Notes: Asia includes Bangladesh, Brunei, China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar Malaysia, Philippines, Thailand, and Vietnam,