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Abstract

Through the lens of a nonlinear dynamic factor model, we study the role of exoge-
nous shocks and internal propagation forces in driving the fluctuations of macroeco-
nomic andfinancial data. The proposedmodel (1) allows for nonlinear dynamics in the
state and measurement equations; (2) can generate asymmetric, state-dependent, and
size-dependent responses of observables to shocks; and (3) can produce time-varying
volatility and asymmetric tail risks in predictive distributions. We find evidence in
favor of nonlinear dynamics in two important U.S. applications. The first uses interest
rate data to extract a factor allowing for an effective lower bound andnonlinear dynam-
ics. Our estimated factor coheres well with the historical narrative of monetary policy.
We find that allowing for an effective lower bound constraint is crucial. The second
recovers a credit cycle. The nonlinear component of the factor boosts credit growth in
boom times while hindering its recovery post-crisis. Shocks in a credit crunch period
aremore amplified and persist for longer comparedwith shocks during a credit boom.
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1 Introduction
What are the drivers of financial and macroeconomic variables – external shocks or endogenous
propagation? This question is timeless in economics. Understanding the origins of economic fluc-
tuations becomes ever more important during downturns because of their implications for the
scope of economic policies. To address this question, dynamic factor models (DFMs) have played
a crucial role (Stock and Watson, 2016). Since their introduction in the 1970s, DFMs have relied
mostly on a vector autoregressive (VAR) representation that imposes a linear relation between the
factor today and its past, as well as between the factor and the observables.1 However, substan-
tial evidence shows that economic variables possess significant nonlinearities (Baker et al., 2016,
Fernández-Villaverde et al., 2015b, Justiniano and Primiceri, 2008). Furthermore, financial data
are more prone to sudden changes, particularly so during times of crises (Gilchrist and Zakrajsek,
2012, Ludvigson et al., 2021). In this paper, we study macroeconomic and financial data through
the lens of a DFM that incorporates nonlinearities in the measurement and state equations.

The nonlinearities in the DFM allow us to exploit many features emphasized in the recent
macroeconomic and financial literature that previous work on factor models has largely left un-
explored. For example, we can use our new nonlinear dynamic factor (NLDF) model to examine
the importance of nonlinear dynamics in the state equation during moments of high volatility in
the economy such as the Global Financial Crisis (GFC); to construct point and predictive density
estimators in the presence of nonlinearities; and to study the truncated relation between factors
and observables as in the shadow interest rate literature (Wu and Xia, 2016). Importantly, we rely
on a coherent framework to simultaneously study all of these forces together.

Our nonlinear factor model is inspired by the pruned second order state-space (2nd SS) model
discussed in Kim et al. (2008) and Andreasen et al. (2017) as the approximate solution of a nonlin-
ear dynamic stochastic general equilibrium (DSGE) model. As discussed in Fernandez-Villaverde
et al. (2016) and the references therein, an important feature of the pruned solution is that it can
capture several types of nonlinearities with reasonable accuracy, a feature that we aim to exploit
in this paper. We re-interpret the 2nd SS framework in the context of a DFM whose factor evolves
according to the state-space model’s state equation. We allow the measurement equation to be po-
tentially nonlinear if economic theory suggests it. This adjustment accommodates situationswhere
the observables are bounded and allows for the presence of non-additive measurement errors.

The nonlinear state dynamics generate novel implications both in terms of the impulse response
functions (IRFs) and the predictive densities. Although the nonlinearities are specified at the factor

1The standard representation follows

Yt = ΛFt + et; Ft = Ψ(L)Ft−1 + vt.

Here, the first and second expressions correspond to the measurement and state equations, respectively.
The shocks et and vt are assumed normally distributed and independent over time and cross-sectionally. L
is the lag operator.
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level, they are passed through to the observable variables via the measurement equation. The IRFs
produced by the model have three interesting properties. First, they are asymmetric, meaning that
positive shocks produce differently shaped IRFs compared with same-sized negative shocks. Sec-
ond, they are state dependent, meaning that the shapes and magnitudes of the IRFs are different
depending on initial conditions. Third, they are size dependent, meaning that one standard devi-
ation shocks generate different shapes in the IRFs compared with two standard deviation shocks.
The model has implications for higher-order moments as well, leading to rich distributional dy-
namics. Despite homoskedastic and normally distributed innovations, the unconditional distri-
bution of the states is non-normal because of the asymmetries implied by the model. Moreover,
the model generates predictive densities that have time-varying volatility and asymmetric tail risk
movements. The latter fact is a key property documented by Adrian et al. (2019) in the macro data.

With the NLDFmodel in hand, we analyze the role of external forces and internal propagation
in two macroeconomic and financial cases. In our first case, we estimate the shadow interest rate
model along the lines of Wu and Xia (2016). Our exercise extracts a common factor from a series
of U.S. forward rates while respecting the effective lower bound (ELB) in the short-maturity rates.
There are two key differences from Wu and Xia (2016). First, we model the yields in first differ-
ences, following the recommendations of Onatski and Wang (2021) and Crump and Gospodinov
(2022). Second, we investigate the possibility of nonlinear factor dynamics in the interest rates.
This exercise is motivated by the literature debating whether there were structural changes in the
behavior of longer-term yields brought about by the ELB constraining monetary policy (Swanson
and Williams, 2014). Our nonlinear factor model provides one avenue to test this question empir-
ically because it allows for state-dependence.

We find that allowing for the ELB constraint is crucial, both in terms of estimating a yield curve
factor that cohereswith the historical narrative ofmonetary policy and inmodel fit. This result is in
line with results found inWu and Xia (2016). The presence of the ELB affects the estimation results
in two time periods. The first is in the late 2003 and early 2004 period, when the fed funds rate
declined to 1 percent. The second is the long spell in the zero lower bound that began in the GFC.
After allowing for the ELB constraint, however, we do not find much evidence of nonlinear factor
dynamics, which suggests that the dynamics of the entire yield curve did not appreciably change
upon entering the ELB period. The key nonlinearity to account for is the lower bound constraint
for the shorter-maturity yields.

Our second case estimates a nonlinear credit cycle as the common component of U.S. credit
growth dynamics across four sectors: nonfinancial business, household, financial, and public sec-
tors. The investigation is motivated by the extensive theoretical and empirical literature document-
ing the importance of credit growth and leverage in understanding the credit cycle and especially
nonlinear amplification of shocks (Bernanke et al., 1999, Brunnermeier and Sannikov, 2014, Schu-
larick and Taylor, 2012). We investigate the presence of common nonlinear dynamics across sectors
in a time series context. Our nonlinear factor captures the slow rise and rapid declines common
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across credit sectors. The results highlight the importance of a slow-moving second-order factor
that boosts credit growth in boom times – notably beginning in the mid 1990s until the onset of
the GFC. Its collapse in the GFC plays a key role in the sluggish post-crisis recovery of credit. The
effects of the same-sized shock to the credit cycle factor are different depending on the state of the
economy. Shocks in a credit crunch period are more amplified and persist for longer compared
with shocks during a credit boom. Negative shocks lead to increases in the standard deviation of
the credit factor predictive distribution. The combination of the decline in mean and increase in
volatility generates larger movements in downside tail risk compared with upside risk.

Related Literature. The literature has considered some forms of nonlinearities in factor mod-
els like Markov switching, time-varying parameters, and stochastic volatility. However, to the best
of our knowledge, there is no work on models that allows for second-order dynamics in the state
equation or general nonlinearities in the measurement equation. The classic example these days
of a nonlinearity in the data is the zero lower bound imposed on short-term interest rates. In gen-
eral, we find lower and upper bounds when we deal with percentages like labor market tightness,
transition probabilities, and job-finding and separation rates, so investigating a factor model that
can deal with these situations is important.

Our work is particularly close to two recent papers in the literature. First, Aruoba et al. (2017a)
introduce the quadratic autoregressive process (QAR), which allows quadratic terms in lagged
regressors aswell as GARCH (general autoregressive conditional heteroskedasticity) features. Like
our approach, they rely on the pruned representation to generate a stable model, but their study
concentrates on univariate models and posits that the observables follow the QAR. In contrast, our
factor model framework can be modified to admit different classes of nonlinearities like the one
introduced by the ELB.

Second, Gorodnichenko andNg (2017) use the insights from the second order solution of DSGE
models to obtain restrictions on the dynamics of observables and its squared values. From this
analysis, the authors extract a factor that mimics the dynamics of a level state variable and another
one that displays stochastic volatility features. There are important differences between our papers.
While the approach of Gorodnichenko and Ng (2017) is based on the approximated solution pro-
posed by Benigno et al. (2013), our representation arises from the perturbed solution of a nonlinear
DSGEmodel (Andreasen et al., 2017). They extract factors based on singular value decomposition.
In contrast, we estimate the nonlinear system using likelihood-based methods, which allows us,
among other things, to build predictive densities, filter the most likely state of the economy, or
report IRFs conditional on the state of the economy. Finally, the methodology of Gorodnichenko
and Ng (2017) requires that observables be measured without error and rules out the possibility
of kinks in the data.

More broadly, we contribute to the large literature on factor models. Stock and Watson (2016)
give an in-depth review of linear factor models. Among the recent advances, Banbura and Mod-

4



ugno (2014) allow for missing data with arbitrary patterns in estimating linear factor models by
using an expectations maximization algorithm. Chauvet (1998) uses a linear factor model with
regime switches to estimate business cycles. Aruoba and Diebold (2010) leave nonlinear factors as
a to-do task, although with a focus onMarkov switching regimes rather than the type we propose.
Shintani (2005) estimates a nonparametric diffusion model for forecasting Japanese data. Chen
et al. (2021) analyze a semiparametric panel data model in which latent factors are modeled in a
nonparametric fashion. Cheng et al. (2016) propose a linear DFM that allows for breaks in load-
ings and the number of factors, which is an alternative view of the world. They find that the Great
Recession led to a change in the factor loadings and the emergence of a new factor. Carrasco and
Rossi (2016) consider forecasting with misspecified factor models.

Finally, our study is also related to work that departs from Gaussian shocks (Gourieroux et al.,
2019). Aruoba et al. (2021) estimate a structural VAR model that allows coefficients to switch de-
pending onwhether the economy is at the ELB. The results on the distributional implications of the
NLDF also connect us to a growing literature on tail risks and distributional asymmetries (Adrian
et al., 2019).

The rest of the paper is organized as follows. The next section discusses the NLDF model
using a simple example with two observables. We motivate the factor model by connecting it to
the pruned solution of a nonlinear DSGE model. In Section 3, we highlight the novel implications
of the nonlinear DFM for moments, IRFs, and predictive densities. Section 4 discusses our two
empirical applications. Some concluding remarks are in the final section.

2 The Nonlinear Dynamic Factor Model
In this section, we introduce the NLDFmodel and then discuss the motivation for using our factor
dynamics. Next, we discuss possible specifications of the measurement equation. Finally, we close
the section by presenting our estimation algorithms.

2.1 Model Specification

We consider the following NLDF model:

Measurement: yt = G(ft) + ηεt (1)

Factor dynamics: ft = H(ft−1) + σνt. (2)

Here, εt is anN×1vector of iid N(0, IN ) innovations, νt is aK×1vector of iid N(0, IK) innovations,
yt is anN × 1 vector of observed variables, and ft is theK × 1 underlying factor. G(·) andH(·) are
general, possibly nonlinear functions. In addition, we assume that theH(·) function is at least twice
differentiable. η is anN×N diagonal matrix of standard deviations, and σ is aK×K matrix that is
the square root of a variance-covariance matrix. The additive measurement error assumption is for
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ease of exposition. Our framework can easily handle multiplicative errors, like in Hwang (1986),
or nonadditive errors.

For empirical applications involvingdata such as unemployment, gross domestic product (GDP)
growth, or inflation rates, a typical desirable feature of the factor process is stationarity. A generic
H(·) function, estimated using a limited data range, may imply explosive dynamics of the factor
and, thus, of the observables. To avoid this problem, we use the pruned motion equation (Kim
et al., 2008, Andreasen et al., 2017) that has easily verifiable stationarity conditions.

Tomake the analysismore concrete, consider anNLDFmodel inwhich themeasurement equa-
tion is linear in a single underlying factor and we take a pruned second-order approximation to
the function H(·). We adopt the single factor specification for the rest of the paper. Let ft denote
the underlying factor and fft and fst its first- and second-order terms such that ft = c + fft + f st .
Then the pruned system is

yt = Gft + ηεt
ft = c+ fft + fst – first- and second-order factors

fft = hxf
f
t−1 + σνt

fst = hxf
s
t−1 + 1

2hxx

(
fft−1

)2
.

(3)

The first-order term follows the same process as a linear DFM with the persistence parameter
governed by hx. The exogenous shocks νt perturb the first order term on impact. The second-order
term depends on the square of the lagged first-order term, with hxx modulating the importance of
this relationship. The second-order termalso has persistence determined byhx. The exact structure
of this process is discussed in detail as the second-order solution to a dynamic equilibrium model
that prevents explosive paths (Andreasen et al., 2017).

This structure has two main attractive properties. First, the model allows for rich nonlineari-
ties due to the presence of the second-order term. Specifically, the model can generate asymmetric,
state-dependent, and size-dependent IRFs. Moreover, themodel can generate time-varying volatil-
ity through the state dependence. We will illustrate these properties in detail in Section 3. Second,
the model has easily verifiable stationarity conditions. As long as |hx| < 1, the model is stationary.

The presence of the quadratic term hxx introduces an additional distinction relative to the linear
factor model. Even if the shocks have zero mean, the factor has a mean different from zero. This
property can be verified by applying the expectation operator on the second-order term in Equation
3. In the dynamic equilibrium models literature, hxx makes the model’s deterministic steady state
different from its stochastic steady state. We include a constant c in the factor’s law of motion
to adjust the overall factor to have zero mean in our applications, although this parameter may
alternatively be estimated.
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2.2 Motivating the Nonlinear Dynamic Factor Model

Our time series model is closely connected to the nonlinear solution of a DSGE model, which we
view as an important strength of our framework. Nonlinear DSGE models have rapidly grown in
popularity, spurred on by an ample body of empirical research that documents that the U.S. econ-
omy has nonlinear features such as stochastic volatility (Justiniano and Primiceri, 2008, Fernández-
Villaverde andRubio-Ramírez, 2007, Bloom, 2009, Fernández-Villaverde et al., 2015a), time-varying
monetary policy (Fernández-Villaverde et al., 2015b), and the zero lower bound on short-term in-
terest rates (Fernandez-Villaverde et al., 2015, Gust et al., 2017, Wu and Xia, 2016).

Our NLDF model is the direct time series analogue of the pruned second-order perturbation
DSGE solution. Suppose the DSGE modle has only one state variable (denoted ft). Then, its dy-
namic equation is approximated by

State equation: ft = fft + f st (4)

fft = h1f
f
t−1 + σνt

f st = h1f
s
t−1 +

1

2
h2

(
fft−1

)2
.

Here, h1 and h2 are coefficients and ν is a normally distributed innovation. Comparing Equations
3 and 4, we see that their structures are the same. The key difference is that in the DSGE model
solution, h1 and h2 are known given the deep parameters of the model. In our time series model,
the corresponding parameters are estimated from the data.

If the researcher believes that the fundamental driver of the data is the one in Equation 4, it
seems natural to advocate for the extraction of factors based on an approach that departs from
linearity. Incorrectly assuming a linear factor model, and thereby ignoring the fst term, results
in an estimated factor driven by counterfactually volatile shocks – that is, the researcher would
conclude that fluctuations are in a large part due to exogenous events as opposed to endogenous
propagation.

2.3 Specification of the Measurement Equation

Given the nonlinearities modeled in the latent factor, a natural benchmark case is for the measure-
ment equation to be linear, as in Equation 3. The linear measurement equation allows us to prove
that the latent factor is not identified and an additional normalization is needed. We close the
section by discussing some nonlinear measurement equation extensions.

Identificationwith LinearMeasurement Equation Webegin bydiscussing an identification
issue with the linear measurement equation case. To show the issue, it is convenient to use a two-
observable version of our model with a single factor:
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y1,t
y2,t

 =

G1

G2

 ft + ηεt,

ft = c+ fft + fst ,

fft = hxf
f
t−1 + σνt,

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
.

(5)

In this system, the unknown parameters are the loading componentsG1 and G2, the factor’s linear
and quadratic terms hx and hxx, the standard deviation of the shock σ, and the standard deviations
of the measurement errors η.

Proposition 2.1. The sign and scale of the factor in the nonlinear factor model in Equation 5 are not
identified.

Proof. Consider the following constant n 6= 0 and scale the system in Equation 5 as follows:

y1,t
y2,t

 =

G1

G2

( 1

n

)
nft + ηεt

nft = nc+ nfft + nfst

nfft = hxnf
f
t−1 + nσvt

nfst = hxnf
s
t−1 + n

1

2
hxx

(
1

n

)2 (
nfft−1

)2
.

Next, define f̃t = nft, G̃1 =
(
1
n

)
G1, G̃2 =

(
1
n

)
G2, σ̃ = nσ, h̃xx =

(
1
n

)
hxx, c̃ = nc and rewrite the

system as follows: y1,t
y2,t

 =

G̃1

G̃2

 f̃t + εt

f̃t = c̃+ f̃ft + f̃st

f̃ft = hxf̃
f
t−1 + σ̃νt

f̃st = hxf̃
s
t−1 +

1

2
h̃xx

(
f̃ft−1

)2
(6)

This formulation shows that the “tilde”model produces exactly the same observables as generated
by the baseline model. Therefore, not all parameters in the model are identified. Moreover, as n
can be negative, we do not have sign or magnitude identification.

In our applications, we fix G1 = 1, which corresponds to the named factor approach in the
DFM literature (Stock and Watson (2016)).
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Nonlinear Measurement Equation. Although the linear measurement equation is a leading
case, in some instances, economic theory may suggest specifying nonlinearities in the measure-
ment equation. Our model can accommodate these more complex dynamics. For instance, one
could allow for a fully nonlinear measurement equation:

y1,t
y2,t

 = G

ft, η1ε1,t
ft, η2ε2,t

 ,

ft = c+ fft + fst ,

fft = hxf
f
t−1 + σνt,

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
.

Here, G is the nonlinear function mapping from measurement errors and factors to observables.
In our shadow interest rates application, we specify a condition that restricts the level of interest

rates from going below a lower bound via a nonlinear measurement equation, consistent with the
zero lower bound restriction on nominal rates.

2.4 Estimation Algorithms

We use Bayesian methods to estimate the model. As our model is nonlinear, we rely on particle
filtering methods to approximate the likelihood (Särkkä, 2013). We use two algorithms in our
empirical illustrations: a Metropolis Hastings combined with the bootstrap particle filter and a
Gibbs sampling combined with the particle smoother. We believe each has their strengths. The
particle filtering algorithm readily delivers the filtered factor, which may be useful in situations
wheremaintaining the information structure of the filtered variable is important, such as when the
filtered variable is included in a VAR (Fernández-Villaverde et al., 2015a). A caveat of the bootstrap
particle filter is that it demands hundreds of thousands of particles to characterize accurately the
likelihood function. The particle Gibbs sampling algorithm delivers the smoothed estimate, which
is the most accurate estimate of the factor given all of the data. Also, through its exploitation
of ancestor sampling (Lindsten et al., 2014), the algorithm has good mixing properties even with
relatively few particles – in the order of hundreds. The disadvantage is that the sampler is only
approximate for ourmodel, although Lindsten et al. (2014) show that its performance is still good.2

Further details about both algorithms and their computational implementation can be found in
Appendix Section A.

Monte Carlo. In Appendix Section B, we conduct aMonte Carlo exercise to study the estimation
performance. First, we show that if the data-generating process is the nonlinear factor model itself,

2See the associated discussion in Section 7.2 of that paper.
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our estimation strategy can recover the true parameter values. Second, we find that the likelihood
implied by a linear factor model is below the likelihood from the nonlinear model if the data were
generated from our NLDF model. By ignoring the nonlinear dynamics, the linear model tends to
estimate an excessively persistent linear factor.

3 Properties of the Nonlinear Dynamic Factor Model
We nowmove on to some key properties generated by the NLDFmodel. Our focus is on the latent
factor with the understanding that these properties propagate through to the observables via the
measurement equation.3 We focus on three novel features that our NLDF model brings to the
table: asymmetric responses to positive versus negative shocks, state-dependent responses, and
size-dependent responses. These properties of IRFs were previously discussed in the context of
solution methods to DSGE models in Andreasen et al. (2017), but we find it instructive to review
them here. A linear DFM cannot deliver these types of IRFs.

3.1 Analytical Properties of the Model

We begin by discussing the analytical properties of the model. We canwrite the factor dynamics in
a useful state-space form, first presented in Andreasen et al. (2017), to make analytical progress on
the model’s implications for the moments of the factors. To facilitate the exposition, let us continue
to assume a one-dimensional factor. Then one can write the factor dynamics as follows:

ft = c+ fft + f st (7)


fft

fst(
fft

)2
 =


hx 0 0

0 hx
1
2hxx

0 0 h2x




fft−1

fst−1(
fft−1

)2
+


σ 0 0

0 0 0

0 σ2 2σhx




εt

ε2t

fft−1εt

 . (8)

For ease of notation, we write the state space as follows:

zt = Azt−1 +Bζt, (9)

where zt =


fft

f st(
fft

)2
 and ζt =


εt

ε2t

fft−1εt

. The matrices A and B contain the corresponding pa-

rameters in the state equation. It is possible to show that the innovations ζt are intertemporally
3The relationship between the properties of the factor and the observables is most straightforward in the

benchmark case of a linear measurement equation. With a nonlinear measurement equation, there will, in
general, be a nonlinear transformation of the latent factor to the observable variables.
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uncorrelated – in other words, E [ζt+iζt+j ] = 0 for i 6= j. In this section, when we discuss condi-
tional moments at time t, the conditioning set is the past history of factors {fft , fst , f

f
t−1, f

s
t−1, ...}.

First Moment Dynamics. We begin by discussing first moment dynamics. We emphasize four
parts: the persistence of the factor, asymmetry in the impulse response to a positive versus negative
shock, state dependence in the response, and size dependence in the response.

The overall factor has persistence from both the first- and second-order factors. The first-order
factor, fft , has a persistence equal to hx. The second-order factor, fst , has a persistence greater
than hx. The second-order factor has more persistence because while fst follows an autoregressive
process with parameter hx, its “innovation” depends on

(
fft−1

)2
, which itself is persistent with

parameter h2x. As long as hx > 0, which is usually the case for macroeconomic and financial data,
the second-order factor is more persistent than the first-order one.

The ε2t component of the innovation generates an asymmetric response to a positive versus
negative shock becausewhile a positive shock increases εt – and therefore fft – and a negative shock
decreases it, both a positive and negative shock increase ε2t . The important parameter governing the
direction of the asymmetry is hxx. This parameter governs how

(
fft−1

)2
relates to f st and therefore

how the effects of ε2t pass through to the overall factor. If the sign of hxx is positive, then a positive
shock increases fft and the response of ε2t increases fst . A negative shock decreases fft , but the
response of ε2t still increases fst . The effect is reversed if the sign of hxx is negative.

The impulse response is state dependent, which comes from the fft−1εt term in the innovation.

The sign of fft−1 determines the effect of a shock to εt on
(
fft

)2
. Additionally, themagnitude of fft−1

determines the amount of time-varying volatility, which we discuss more in the next subsection.
The ε2t term also creates size dependencies in the response to a shock, meaning that a two stan-

dard deviation shock does not generate double the responses of a one standard deviation shock.
This effect follows straightforwardly from the quadratic transformation. This feature of our model
is important because it can generate strong amplification to shocks during downturn episodes.

The general formula for conditional mean dynamics at horizon h is shown in Equation 10. On
top of the previous discussion, there are two additional points tomention from this equation. First,
the hx term determines the persistence property of the entire system, as is expected. If |hx| < 1,
the conditional mean responses converge. Second, the ε2t innovation produces a nonzero long-run
mean for

(
fft

)2
.

Etzt+h = Ahzt +
h−1∑
i=0

Ai


0

0

σ2

 (10)

Volatility Dynamics. Themodel generates time-varying volatility via the state dependence in-
herent in the second-order factor. The magnitude of fft−1 modulates the effect of εt on

(
fft

)2
. A
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larger value of fft−1 means that the same-sized shock generates a larger response in
(
fft

)2
. In-

tuitively, the quadratic component of the model responds by more the further fft−1 is away from
0.

Vt (zt+h) =

h−1∑
i=0

AiBVt (ζt+h−i)B
′ (A′)i (11)

Vt (ζt+h) =


1 0 hh−1x fft

0 2 0

hh−1x fft 0 Et

((
fft+h−1

)2)
 (12)

The formula for the h-step-ahead conditional variance of the system is shown in Equations 11
and 12. The latter equation shows that the fft−1εt term generates time-varying volatility in the sys-

tem. The conditional variance from this term depends on
(
fft−1

)2
and therefore has a persistence

of h2x. As Equation 11 shows, the conditional variance of zt at various horizons is then a discounted
sum of the conditional variance of ζt from t+ 1 up through t+ h.

Relationship Between First and Second Moments. Our model generates a non-zero corre-
lation between conditional first and second moments. This relationship can be seen by noticing
that

(
fft−1

)2
simultaneously determines the conditional mean of fst and the conditional volatility

of shocks to
(
fft

)2
. Simultaneous movements in mean and volatility are an important mechanism

identified in the growth-at-risk literature to generate asymmetric tail risk behavior (Adrian et al.,
2019).

More formally, we can examine the conditional covariances between fft and
(
fft

)2
and f st .4 We

begin by discussing short-run conditional correlations and then move on to unconditional correla-
tions. These expressions can be derived from the general formulas in Equations 11 and 12. At one
step ahead, the conditional covariance between the first order factor and its square is

Covt

(
fft+1,

(
fft+1

)2)
= 2σ2hxf

f
t . (13)

As suggested by the earlier discussion on conditional mean dynamics, the sign of fft is impor-
tant. Specifically, if fft is positive, the conditional correlation between the two terms is positive as
well and vice versa.5 To understand why, note that the shock εt+1 determines fft+1, while ε2t+1 and

fft εt+1 determine
(
fft+1

)2
conditional on knowing fft . The shocks εt+1 and ε2t+1 are uncorrelated,

so any nonzero covariance must come from fft εt+1. When fft is positive, then further increases

4While we discuss the correlations between fft and
(
fft

)2
and fst , keep in mind that

(
fft−1

)2
affects the

overall factor ft.
5This result is assuming hx > 0, which is the empirically realistic range.
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in the first-order factor increase
(
fft+1

)2
and the correlation between the first-order factor and its

square is positive, whereas when fft is negative, further decreases in the first-order factor increase(
fft+1

)2
and the correlation is negative.

At two steps ahead, the conditional covariance is:

Covt

(
fft+2,

(
fft+2

)2)
= 2σ2h2x

(
1 + h2x

)
fft . (14)

Qualitatively, the same mechanisms are at play as in the one-step-ahead case. The correlation
is positive if fft > 0 and is negative otherwise because both the first-order factor and its square
have persistent dynamics. For example, if fft is positive, fft+1 is expected to remain positive and
therefore continue producing a positive co-movement between the first-order factor and its square.
The overall covariance is a sum of two terms because it takes into account shocks at t+ 1 and t+ 2.

The conditional covariance between the second-order factor and the first-order factor squared
is 0 at one step ahead, as the second-order factor at time t+ 1 is predetermined given time t infor-
mation. The conditional covariance becomes nonzero at two steps ahead and its value equals

Covt

(
fst+2,

(
fft+2

)2)
=

1

2
hxx

(
Et

((
fft+1

)2 (
fft+2

)2)
− Et

((
fft+1

)2)
Et

((
fft+2

)2))
︸ ︷︷ ︸

Conditional one-step ahead autocovariance of
(
fft+1

)2
. (15)

The two terms are tightly related because the second-order factor directly loads onto past val-
ues of the first-order factor squared. As can be seen by examining Equation 15, the conditional
covariance is determined by two components: hxx and the conditional one-step-ahead autocovari-
ance of

(
fft+2

)2
. If hxx > 0, then increases in the first-order factor squared generate increases in the

second-order factor, and the conditional covariance is positive. The effects are reversed if hxx < 0.
The autocovariance term appears because the time t+2 value of the second-order factor loads onto
the time t+ 1 value of the squared first-order factor, so intertemporal dynamics play a role.

We compare the short-run co-movement behavior with unconditional co-movements. The un-
conditional variance-covariance matrix of the system is given by Equations 16 through 18:

V (z) = AV (z)A′ +BV (ζ)B′ (16)

V (ζ) =


1 0 0

0 2 0

0 0 E
(
ff
)2
 (17)
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E (z) = (I −A)−1


0

0

σ2

 . (18)

The general form of V (z) is as follows:

V (z) =


X 0 0

0 X X

0 X X

 , (19)

where the X denotes nonzero values. Unconditionally, there is no correlation between the first-
order factor and its square, or between the first- and second-order factors. Although the first-order
factor determines the time-varying volatility in the system, it unconditionally has zero correlation
with volatility because the time-varying volatility depends only on the magnitude of fft−1, not its
sign. As the unconditional distribution of fft is symmetric around zero, this correlation is also zero
unconditionally.

There is dependence, however, between the second-order factor and the volatility in the system,
which induces a relationship between level and volatility, even unconditionally. This dependence
arises because the first-order factor squared enters as the driving force of the second-order factor.
Unsurprisingly, the sign of hxx is important in governing this relationship, with a positive hxx
generating a positive dependence between level and volatility and a negative hxx generating a
negative dependence.

3.2 Simulations

We use a parameterized version of the nonlinear model and simulation methods to further illus-
trate its properties. To this end, let us consider the baseline model with two observables:

y1,t
y2,t

 =

G1

G2

 ft + ηεt

ft = c+ fft + fst

fft = hxf
f
t−1 + σvt

f st = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
,

(20)

The baseline parameterization is c = −1
2

hxxσ2

(1−hx)(1−h2x)
, G1 = 1, G2 = 2, hx = 0.45, hxx = 0.5, and

σ = 1. The setting of c guarantees that the overall factor f has zero mean. We start our discussion
with the IRFs implied by the model. Then, we move on to the distributional implications of the
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shocks. A key parameter in the analysis is hxx. Its sign determines the direction of the asymmetry.
We set hxx > 0, but if hxx were to be negative, then the asymmetries would be flipped.

Impulse Response Functions. We focus on the three novel properties that our factor model
can deliver: asymmetric, state-dependent, and size-dependent shocks.

As our model is nonlinear and state dependent, there are two main issues when computing
IRFs. First, as discussed in Koop et al. (1996) and Goncalves et al. (2021), in the presence of non-
linearities, the different notions of IRFs do not necessarily coincide. We use the definition of IRFs
suggested by Goncalves et al. (2021):

IRFδ,t−1 [ft+h] = E [ft+h (δ)− ft+h|Ωt−1] , (21)

where Ωt−1 = {fft−1, f
f
t−2, ..., f

s
t−1, f

s
t−2, ...}, δ is the size of the innovation, ft+h is the baseline value

conditional on a path of shocks {νt, νt+1, ...}, and ft+h (δ) is the counterfactual value conditional
on the same path of shocks except with the addition of δ at time t {νt + δ, νt+1, ...}.

This definition of IRFs has several properties. First, it integrates out the effects of future shock
uncertainty, similarly to the generalized IRF. Second, as the time t shock is added onto a baseline
path, the exercise is best thought of as showing the effects of perturbing the time t innovation νt
by δ. This thought experiment is a slightly different when compared with the generalized IRF one,
in which the time t shock is fixed at δ in the counterfactual case (Koop et al., 1996). We prefer the
definition suggested by Goncalves et al. (2021) because it maintains randomness in the period of
the shock, which has important implications when thinking about higher-order moments and the
distribution. Finally, our IRFs are state dependent. We are explicit in our conditioning set to make
this dependence clear to the reader.

We begin by discussing the asymmetric responses to shocks. The first row in Figure 1 shows
the IRFs of the factor following a one standard deviation positive innovation (left panel) and a neg-
ative one (right panel), initializing the first-order factor ff−1 at 0.56 and the second-order factor fs−1
at its unconditional mean value. This calibration is illustrative, and we choose a nonzero lag of
the first-order factor to showcase the state-dependence in the IRFs. The figure plots the dynamics
of the factor (blue line) and its first- (dashed black line) and second-order (solid black line) com-
ponents. These IRFs illustrate the asymmetry that the model can generate. Specifically, with this
parameterization and initial condition, a positive shock persists for longer than a negative shock.
This divergence can be seen by comparing the impulse response with its first-order component.
The first-order component is linear and therefore symmetric. It produces impulse responses that
are representative of those that come from a standard DFM. The blue line is formed by adding the
first- and second-order components together. Given the initial conditions and the fact that hxx > 0,
the second-order term is always positive in this example. This finding means that the blue line is
always above the first-order response, no matter whether the shock is positive or negative.

The second row of the figure illustrates the next important property that our model can pro-
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Figure 1: Nonlinear Dynamic Factor Model Can Generate Asymmetric, State-Dependent,
and Size-Dependent Responses to Shocks
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NOTE: Row 1: Asymmetric responses to the same-sized shock in a calibrated model. This figure shows
the effects of a positive shock on the left panel in blue. The dashed black line is the first-order response,
while the solid black line is the second-order response. Row 2: State-dependent responses in a calibrated
model. The responses to a positive shock are shown in the left panel. The blue line is the same as in Row
1, and the dashed black line is the response to the same shock but at a different initial condition. Row 3:
Size-dependent responses in a calibrated model. The responses to a positive shock are shown in the left
panel. The blue line is the same as in Row 1, and the dashed black line is the response to a shock twice the
size as the one that generates the blue line. In all rows, the right panel shows the responses to a negative
shock.

duce: state dependence. The solid blue line is the same response as in the top row. The dashed
black line now shows the responses to the same-sized shock but starting at an initial condition of
ff−1 = 3.33 and f s−1 at its unconditional mean. Although the initial impulse is the same, as can be
seen by the identical response at time 0, the effects of the state dependence kick inwith a one period
lag. Starting from the different initial condition with an elevated first-order factor, both positive
and negative shocks generate larger magnitude of responses in the factor. This difference can be
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understood by examining Equation 8. The lag of the first-order factor determines the volatility of
εt in the third equation governing

(
fft

)2
, with a fft−1 that is larger inmagnitude leading to a higher

variance of εt.
The responses shown in the second row of the figure lead us to another related fact, which we

illustrate inmore detail in the section on distributional responses to shocks but isworthmentioning
here. The different amplification of shocks is indicative of time-varying volatility. This example
illustrates that when the first-order component starts out at a larger value inmagnitude, the overall
nonlinear factor also becomes more volatile. We contrast this state dependence with factor models
of exogenous stochastic volatility, such as Del Negro and Otrok (2008), where movements in the
volatility of the factor are due to separate shocks.

Finally, the third row of Figure 1 shows the size dependence of the IRFs. What we mean by
size dependence is that the shape of the IRF changes depending on the size of the shock. The
blue line is the same one that we have carried over from the previous rows. The dashed black
line is the response at the same initial conditions but to a shock that is two standard deviations in
size instead of one standard deviation. On impact, the response is double that of the one standard
deviation shock. In the next period, however, the shapes of the IRF change for positive and negative
shocks. This fact is especially clear in this example after a negative shock, in which the IRF turns
positive two periods after impact following a two standard deviation shock, while it stays negative
following a one standard deviation shock. In essence, a two standard deviation change to the first-
order component changes the second-order component by more than double that of the first-order
component. This greater-than-proportionate response of the second-order component generates
the different shape of the overall IRF.

Distributional Implications

Despite beingdriven bynormal, homoskedastic shocks, theNLDFmodel produces rich non-normalities
in the distribution of the factor, which then feeds into the distribution of the observables. We begin
by discussing the unconditional distribution of the factor. Next, we move on to the time-varying
volatility and tail risk that our model can produce.

Figure 12 in Appendix Section C shows the distribution of the factor produced by a long sim-
ulation of the model. The distribution produced by the NLDF model is not normal, as evidenced
by its positive skew. Its Kelley skewness, which measures the share of the distance from the 90th
percentile to the 10th percentile that is above themedian versus below themedian, is 0.07.6 By con-
trast, the distribution produced by the first-order component is normally distributed and therefore
has a Kelley skewness of 0.

Focusing only on the unconditional distribution, however, masks important dynamics of the
distributions following disturbances. In Figure 2, we illustrate this feature of our model by simu-

6The formula for Kelley skewness is Q90+Q10−2∗Q50
Q90−Q10 , where Q is the quantile of the distribution.
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lating the predictive distributions at various horizons following the same one standard deviation
shock that we began discussing in the top row of Figure 1.7 The blue distribution is the baseline
density – the one that characterizes the possible outcomes if we simulate the model from the ini-
tial conditions. The dashed black line is the density that realizes if we had a positive one standard
deviation shock at period 0. Our model implies that such a shock leads to a positive shift in the
distribution on impact. Crucially, in period 1, the distribution widens out. The differences in the
distributions persist through period 3, and by period 10, the effects of the shock are largely gone.

Figure 2: Dynamics of the Distribution of the Demeaned Overall Factor in Response to a
Positive Shock
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NOTE: The blue line is the distribution after a positive shock, and the dashed black line is the distribution
without a shock. Period 0 is the period of the shock.

7We generate these distributions by simulating 100, 000 paths from the initial condition. In the baseline
case, we take draws from the data generating process. In the "+1 Shock" case, we add a one standard devi-
ation shock to the impact period’s innovations from the baseline. After the impact period, we use the exact
same draws of the innovations in both scenarios.
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Figure 3 shows the IRFs of the first- and higher-order moments to the shock. For the standard
deviation and tail risk responses, we compute the IRFs as differences in the standard deviation
and shortfall and longrise of the +1 Shock and Baseline distributions. The standard deviation of
the distribution increases, peaking in the first period after the shock. These effects lead to a large
increase in the 5% longrise, as a rise in the mean and increase in the standard deviation greatly
increases the upside tail risk. The 5% shortfall also increases but bymuch less, as themean increase
is counteracted by the increased standard deviation. Therefore, through movements in the higher-
order moments of the distribution, the model can generate distinct asymmetries in the movements
of the upper and lower tails of the distribution, in linewith the stylized facts documented byAdrian
et al. (2019). These IRFs also reinforce that our model can generate time-varying volatility through
the nonlinear dynamics.

Figures 13 and 14 in Appendix Section C show the corresponding distributional responses to a
one standard deviation negative shock. A negative shock lowers the mean and decreases the stan-
dard deviation of the distribution. These factors together again generate amore persistent negative
movement in the longrise but less persistent effects on the shortfall. Comparing the positive and
negative responses, we see that the asymmetries we document for the first moment also carry over
to higher moments. The declines in the standard deviation and tail risk are smaller in magnitude
when compared with the increases in those features of the distribution following a positive shock.

3.3 Variants to Nonlinear Dynamic Factor Model

Before we move to the estimation section, we briefly discuss potential ways in which the model
could be extended to study data that demand a richer factor structure.

Beyond a Second-Order Representation

Our choice of the second-order pruned representation for the factor dynamics is based on its being
parsimonious and onmacroeconomists’ familiaritywith perturbationmethods. But our exposition
is general enough that one can use, for example, projection methods to approximate the functions
G and H. This alternative can capture richer nonlinearities that monomials cannot model. Let
Ψi(·) denote the Chebyshev polynomial of degree i. Then the nonlinear state equation can be
approximated by

ft =
n∑
i=0

θiΨi(f̃t−1) + σνt.

Here, θi are parameters to be estimated and f̃t−1 is a transformation of the original t−1 factor such
that it is bounded between -1 and 1.8 However, this option comes at the cost of potentially more
complex likelihood when estimating the model.

8This transformation is necessary because Chebyshev polynomials are defined in the interval [−1, 1].
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Figure 3: Impulse Response Functions of the Mean, Standard Deviation, and Tail Risk of
the Demeaned Overall Factor in Response to a Positive Shock
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Multidimensional State

One can, in theory, easily expand our model to accommodate more factors. Below, we still use two
observables, but we add an additional factor.y1,t

y2,t

 = G
2×2

x1,t
x2,t

+ η
[2×2]

εt
[2×1]

,

x1,t
x2,t

 = H

x1,t−1
x2,t−1

+ Σ
2×2

νt.
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Here, the functionH(·) is the nonlinear map between the factors yesterday and the factors today. If
one extends the pruned representation from above to the two-factor case, the results from Propo-
sition 2.1 carry over. Specifically, two factors must be named – i.e., their loadings in two of the
observable equations must be set to 1.

4 Macro and Finance Applications Revisited
Now we use the nonlinear factor model to study the role of exogenous and internal forces in the
dynamics of macro and financial series. We have two empirical applications. First, we estimate a
shadow rate model motivated by the work of Wu and Xia (2016). Second, we estimate a nonlinear
credit cycle factor.

4.1 Shadow Rate

Short-termyields have recently hit their lower bound constraints, promptingmodifications to exist-
ing yield curvemodels to account for this behavior. An important advancement camewithmodels
that considered an ELB constraint on short-term yields and thereby allowed the latent yield curve
factor to turn negative. Notably, Wu and Xia (2016) showed that these shadow rate models deliv-
ered ameaningful measure of monetary policy conditions even when the short rate was stuck near
zero.

The usual assumption made in shadow rate models is that the yield factor dynamics are linear
and do not change upon entering the ELB. Implicitly, this assumption presumes that the economy
does not undergo structural changes due to constrained monetary policy, which is at odds with
some of the theoretical literature (Fernandez-Villaverde et al., 2015, Aruoba et al., 2017b) and sup-
ported by others (Wu and Zhang, 2019, Bernanke, 2020). Some empirical studies have investigated
whether structural changes in the economy occurred as a result of the ELB constraining policy
(Swanson and Williams, 2014, Debortoli et al., 2019, Wu and Zhang, 2019, Aruoba et al., 2021).
Among these works, one of particular relevance for our purposes is Swanson andWilliams (2014),
who investigate if the behavior of yields at longer-term maturities in response to news changed
during the ELB.

Ourwork contributes to this debate by investigatingwhether there is evidence of nonlinearities
in the factor dynamics of a shadow rate model. We simultaneously model ELB restrictions on
the yields in the measurement equation and nonlinear factor dynamics. If there were structural
changes in the yield curve movements due to the ELB, our model would be able to capture them
through the second-order factor. Another contribution of our work is that we model the yields in
first differences instead of levels and show how to do so while accounting for the ELB (Onatski and
Wang, 2021, Crump and Gospodinov, 2022).
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Empirical Set-up. We estimate our model on the first differences of one-month-forward rate
data at 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, and 10-year maturities from February 1990
to September 2019, following Wu and Xia (2016) to construct the data.9 We impose a 0.3% ELB on
the series.

We consider the following model of differences in forward rates:

∆forwardht = mh +

Gh(c+ fft + fst ) + ηhεht if Ŝht >= 0.3

−mh + ηhεht otherwise
(22)

where c = −1
2

hxxσ2

(1−hx)(1−h2x)
, Ŝht =

∑t
τ=2

(
mh +Gh

(
c+ ffτ + fsτ

))
+ forwardh1 , ∆forwardht =

forwardht −forwardht−1, and index h stands for the maturity. Wemodel the latent factor according
to our second-order dynamics:

fft = hxf
f
t−1 + σνt (23)

fst = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
Wenormalize the factor loadingG1 on the three-month rate to be 1. We also allow for yield-specific
constantsmh that capture any differences in the average forward rate changes across maturities.

The model has two key nonlinearities. First, there is an ELB constraint in the measurement
equation, which removes any influence of the factor if it predicts a rate lower than 0.3% in levels.
Instead, the measurement equation is set to ∆forwardht = ηhεht . At the ELB, the observed change
in the forward rate should be 0%, as the level is stuck at 0.3%. The measurement error picks up a
residual difference. Second, the latent factor dynamics are allowed to be nonlinear.

We estimate the nonlinear model using Metropolis Hastings combined with the bootstrap par-
ticle filter.10 Weuse 500, 000particles in the particle filter. We take 510, 000draws from the posterior
distribution with a burn in of 210, 000. We construct the posterior distributions for our results by
taking every 100th parameter draw from the remaining 300, 000 draws.

As a comparison, we also estimate a linear version of the model in which we do not model the
ELB in the measurement equation and impose linear factor dynamics.11 Insofar as the nonlineari-
ties we consider are empirically important, the nonlinear model should fit the data better than the
linear model does. If the hxx term in the nonlinear model is estimated to be insignificant, then we
interpret that as evidence against state-dependent dynamics at the ELB.

Historical Estimates of the Forward Rate Factor. We first discuss the historical filtered es-
timates of the forward rate factor implied by our nonlinear model and compare it with a linear

9Further details about the data construction can be found in Appendix Section D.
10The estimation details and prior distributions can be found in Appendix Sections A and D.
11We estimate this model with the Metropolis Hastings algorithm and the Kalman Filter. Further details

can be found in Appendix Section D.
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model that does not account for the ELB restriction and imposes only linear factor dynamics. The
top panel in Figure 4 shows the filtered estimates of the factor produced by our nonlinear model.
The factor captures the contours of historical yield curve movements. For example, we catch the
rapid drop in short- and long-term rates in the early 1990s, which was then followed by a tight-
ening cycle in monetary policy during the middle of the decade. From 1995 through 1996, the
10-year forward rate dropped more than 2 percentage points, which our factor captures. As we
move on to the 2000s, our estimated factor reflects the easing cycle in the early 2000s followed by
tightening beginning in 2004. The factor then rapidly drops entering into the GFC. In the mid-
dle of the GFC, short-term interest rates hit their ELB, which is highlighted by the gray area in
the figure. Because our model can account for an ELB in the measurement equation, however, it
still estimates variability in the factor, chiefly the continued decline in long-term rates. The lack
of variation of shorter-term maturities leads to a widening of the uncertainty in the estimated fac-
tor as more forward rates hit their ELB. Finally, as we exit the ELB, the factor captures the rise in
short-term forward rates.

It is worth emphasizing that our factor matches some important events in recent monetary
policy (the red lines in Figure 4). For example, there is a sharp decline in the factor in the aftermath
of 9/11. A similar sudden drop is observed around the announcement of the Fed’s first round
of quantitative easing (QE1). In contrast, the Taper Tantrum of 2013 coincides with a rise in the
factor. Interestingly, our estimated factor shows that QE3 did not result in a change of the stance
of monetary policy.

The bottom panel shows the corresponding filtered estimates from a linear model. Outside of
the highlighted ELB period in gray, the two models estimate similar factors, foreshadowing the
limited role played by the second-order factor dynamics. During the ELB period, however, the
factor estimates diverge. The linear model is constrained by the absence of variation in short-term
forward rates, so they were stuck at 0, while long-term rates continued to vary. Indeed, these
fluctuations in the longer maturity rates inform the dynamics of our factor during the zero lower
bound episodes. On balance, the linear model estimates little variation during the ELB period,
thereby sacrificing fit to the long-term yields.

Figure 5 shows themodel implications for the filtered level of the shadow 3−month and 10−year
rates in red. We calculate these values by ̂forward

h,sh

t =
∑t

τ=2mh+Gh

(
c+ fft + f st

)
+forwardh1 .

We ignore the ELB restrictions placed on the forward rate, and so these estimates are best inter-
preted as shadow rates (hence the sh in the superscript). In the top row, we also show the Wu and
Xia (2016) shadow federal funds rate in blue for comparison.

As our nonlinear model allows the shadow rate to go negative, we capture remarkably similar
dynamics to Wu and Xia (2016). Namely, our shadow three-month rate continues to trend down
into 2014 and 2015 before lifting off in early 2016. Wu and Xia (2016) interpret the decline of the
shadow rates during this period as evidence of the effectiveness of unconventional monetary pol-
icy, the effects of which can be seen in the decline of longer-term unconstrained rates. The influence
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Figure 4: Filtered Estimates of the Forward Rate Factor from the Nonlinear and Linear
Models
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NOTE: Filtered estimates of the forward rate factor estimated by the nonlinear model (top panel) and linear
model (bottom panel) and 80% credible sets (blue shaded area). The gray shaded areas denote the periods
in which the 3-month forward rate is at the effective lower bound. QE1, QE2, and QE3 are the first, second,
and third rounds of quantitative easing by the Fed.

of the longer-maturity rates on the shadow rate between 2009 and 2015 can be seen in the inset at
the bottom-left panel in Figure 5. Both the 10-year and the shadow rates feature a downward trend
and have broadly similar dynamics. In contrast, the linear model’s estimates do not capture any
of these movements in the ELB period, and we see a largely flat prediction of the three-month rate
from the factor.

Importance of the Nonlinear Components. How important are the nonlinear additions to
the model? From the filtered estimates, we see clear evidence that the ELB restriction tangibly
changes the factor estimates. Moreover, amarginal likelihood comparison between the twomodels
shows that the nonlinear model is heavily favored by the data at 640 versus 575 log points.12 Taken
together, these results suggest that allowing for nonlinearities is important to understand yield
curve dynamics.

The central question in our investigation is whether the ELB produced structural changes in
yield curve dynamics and therefore changes in the behavior of longer-term forward rates uncon-

12We compute the marginal likelihood using the modified harmonic mean (Geweke, 1999). We use a
truncation parameter of 0.95. The results are similar for truncation parameters of 0.5 and 0.75.
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Figure 5: Filtered Estimates of the Shadow 3-Month Rate and 10-Year Rate from the Non-
linear and Linear Models
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NOTE: Filtered estimates of the shadow 3−month forward rate (top row) and the 10−year rate (bottom row),
by the nonlinear model (first column) and linear model (second column). The red lines denote the filtered
estimates with 80% credible sets (red shaded area). The dot dashed magenta line is the observed data. The
dashed blue line is the shadow federal funds rate estimated by Wu and Xia (2016).

strained by the ELB. This question can be answered by examining whether the statistical gains
from the nonlinear model are primarily due to the ELB constraint on the measurement equation,
the second-order factor dynamics, or both. Table 2 in Section D of the Appendix shows the 80%

credible sets of parameter estimates. There, we can see that the credible sets for hxx – the key pa-
rameter that governs the second-order factor – ranges from −0.01 to 0.47. These estimates contain
0 and, at best, can be characterized as marginally significant, suggesting that higher-order factor
dynamics play a limited role. We can also estimate a version of the model in which we maintain
the ELB restriction in Equation 22, but we impose linear factor dynamics. This version of themodel
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produces filtered factors similar to the fully nonlinear model and fits the data slightly better in a
marginal likelihood sense (642 versus 640 log points).

Our empirical evidence then is in favor of the idea that the ELB mainly was a restriction on
the behavior of short-term yields. There is little evidence of nonlinearities in the factor dynamics,
at least using our model. Therefore, dynamics of the factor continued to propagate linearly as in
unconstrained times.

4.2 Nonlinear Credit Cycle

Since the GFC, economists have once again taken a close look at the importance of credit growth
for macroeconomic fluctuations (Schularick and Taylor, 2012). Excessive credit buildups often pre-
cede financial crises, and leverage can further amplify shocks. Moreover, it is not enough to focus
on one credit sector, but instead a broad monitoring framework is needed (Adrian et al., 2015). For
instance, Mian et al. (2017) emphasize the importance of household debt to GDP as a predictor
of lower GDP growth and higher unemployment worldwide. Corporate leverage may lead to dis-
torted investment decisions due to debt overhang effects (Gomes et al., 2016). Financial-sector lever-
age can amplify shocks via the financial accelerator and binding borrowing constraints (Bernanke
et al., 1999, Gertler and Karadi, 2011). Finally, as discussed in Jorda et al. (2016), high levels of
public debt tend to prolong the pain of private-sector deleveraging. Taking center stage in these
studies is the importance of credit growth.

Our second application investigates the importance of a common component in real credit
growth in the United States across the nonfinancial business, household, financial, and public sec-
tors from 1952:Q1 through 2021:Q4. Credit growth across different sectors may move together
because of common factors such as changes in risk appetite, financial technology, or structural
reforms. Moreover, economic theory suggests the potential importance of nonlinearities in deter-
mining the dynamics of credit growth. Minsky (1977) describes an economy that may experience
a rapid contraction in credit after a long boom with speculative lending as expectations rapidly
change. Bordalo et al. (2021) formalize these dynamics in a model with diagnostic expectations.
Several papers highlight the role of occasionally binding borrowing constraints in modeling U.S.
business and credit cycles (Brunnermeier and Sannikov, 2014, Guerrieri and Iacoviello, 2017). We
view our model as one avenue to check how important the nonlinear dynamics are in the data
without needing to resort to a fully specified structural model.

We estimate a one-factor version of our nonlinear factor model (Equation 3). We use a par-
ticle Gibbs sampling algorithm with 100 particles and take 1.5 million draws from the posterior
distribution, burning in the first 600, 000. To form our posterior distribution, we take every 300th
draw for a total of 3, 000 draws. For posterior distributions of IRFs and distributional moments,
which require heavier computation, we use 1, 000 draws of the parameters. Further details about
the estimation, including the prior specification, can be found in Sections A and E of the Appendix.
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Credit Growth Dynamics. Figure 15 in Appendix Section E shows the data that we use to
estimate the model, which are normalized U.S. real credit growth in the nonfinancial business,
household, financial, and government sectors. The data come from the Statistical Release Z.1 “Fi-
nancial Accounts of the United States” data provided by the Federal Reserve Board.13

Private credit growth generally increases during expansions and declines during recessions,
although the troughs of nonfinancial business and financial credit growth lag the troughs of reces-
sions. The three private credit growth series are fairly positively correlated, ranging from 0.4 to 0.5.
In the nonfinancial business and household sectors, credit growth exhibits an important asymme-
try, with expansionsmarked by steady, strong growth and recessions associatedwith sharp, violent
declines. These dynamics have implications for higher-order moments, with the Kelly skewness
of nonfinancial business credit growth at −0.23 and household credit growth at −0.15. Financial
credit growth experienced rapid declines in the GFC but overall has a skewness close to 0.

Conversely, government credit growth is mildly negatively correlated to the three other series
because it has increased in recent recessions. The series has a distinct positive skew due to several
large spikes in public debt.

Historical Credit Cycle Estimates. Our estimates provide evidence of a nonlinear factor that
we call the credit cycle. For identification purposes, we fix the factor loading for nonfinancial
business credit growth at 1. The factor positively loads onto the household and financial sectors,
with 100% of draws above 0 in both cases. Indeed, the posterior median of the factor loading on
household credit is 1.3, with nearly all draws above 1, while the posterior median of the loading
on financial credit is around 1. The factor, therefore, is heavily informed by the common cyclical
co-movement of the three private credit growth series. The factor, however, also plays a role in un-
derstanding the public credit growth dynamics. It has a factor loading of −0.2 on the government
credit growth series, with nearly all draws less than 0. Therefore, the factor broadly captures the
correlation dynamics we documented in the data.

Figure 6 shows the smoothed factor estimates. In the top panel, the red line is the posterior
median of the nonlinear factor estimates along with the 68% credible bands.14 The credit cycle
factor was strong throughout the 1960s before the recession in 1969. It then rebounded before
collapsing again during the mid-1970s recession, with similar dynamics repeating again in the
late 1970s to early 1980s. The frequency of the credit cycle lengthened afterward, with a robust
expansion in the 1980s before declining again in the late 1980s and early 1990s with the savings
and loan crises. Following that episode was a prolonged expansion through the 1990s and 2000s
before the collapse in the GFC. The recovery from the GFC was especially slow, with the credit
factor still below its mean even more than 10 years after the recession. This finding points to a
secular stagnation in financial markets, that is, the GFC resulted in a significant and permanent

13The details of the data construction can also be found in Section E of the Appendix.
14We show 68% bands instead of 80% in the previous application because we are using quarterly as op-

posed to monthly data (e.g. Stock and Watson (2016)).
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Figure 6: Estimated Credit Cycle and the Contribution of the Second-Order Factor
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NOTE: Smoothed factor estimates produced by the nonlinear dynamic factor model. The top panel shows
the demeaned factor estimates, with the red line being the estimate of the nonlinear factor and the blue line
the estimate of the first-order factor. The shaded areas denote 68% credible sets. The bottom panel shows
the demeaned second-order factor with 68% credible sets.

change in financial markets. Indeed, we can see that the stagnation captured by the factor arises
from the dynamics of credit in the household and financial sectors.

The blue line and shaded areas are the corresponding movements of the first-order factor only
for comparison purposes. These are the counterfactual estimates of the factor if we had set hxx to 0

across all of the draws, holding all else equal. The bottom panel shows the estimates of the second-
order factor adjusted to have 0 mean. The nonlinear component of the model was significantly
positive starting in the 1970s, providing a boost to credit growth. It then declined to negative
territory in the late 1980s during the savings and loan crisis. The factor again turned positive for
a 15-year stretch beginning in the early 1990s until the GFC, when the second-order factor swung
heavily negative. This negative swing contributed to the sluggish recovery of credit growth post-
crisis.
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Table 1: Unconditional Moments Implied by the Nonlinear Dynamic Factor Model and the Linear
Factor Only

Skewness 5% Shortfall 95% Longrise Corr
(
fs,
(
ff
)2) Variance Decomp

Nonlinear −0.18 −1.91 1.22 −0.53 9.69

[−0.27,−0.07] [−2.59,−1.38] [1.08, 1.37] [−0.54,−0.51] [1.41, 25.78]

Linear Only −0.00 −1.34 1.33 − −
[−0.00, 0.00] [−1.49,−1.20] [−1.48,−1.19] − −

NOTE: The table shows the Kelly skewness, 5th/95th shortfall and longrise, and the variance decomposition
showing the percentage of unconditional variation implied by the second order factor. "Nonlinear" refers to
the full model while "Linear Only" refers to a counterfactual in which hxx = 0 for all of the draws, keeping
everything else the same. The headline number is the posterior median while the numbers in brackets are
the 16/84 credible sets.

Importance of the Nonlinear Factor. How important is the nonlinear factor when modeling
the credit cycle? We answer this question in three ways. First, we look at the unconditional distri-
bution of the nonlinear model compared with a counterfactual one with only the first-order factor
active. Second, we investigate the state-dependent effects of shocks conditioning on three periods:
the credit boom in the mid-2000s, the bust in the late 2000s and early 2010s, and a mixed case in
the late 1980s. We find the last period listed particularly interesting, as it had a positive first-order
and overall credit factor but a negative second-order factor. This finding is in contrast to the first
two periods, in which the first- and second-order factors had the same signs. Finally, we look at
the standard deviation and tail risk effects of shocks. It is important to reemphasize that in a linear
DFM, shocks do not have state-dependent nor higher-order moment effects.

Unconditional Distribution

A key implication of the nonlinear model is that the unconditional distribution of the factor is
not normally distributed, even though the exogenous innovations to the system are. This diver-
gence from normality does not occur if we ignore the second-order component. In examining the
credit growth data, we saw some evidence of asymmetries. These features of the data inform the
estimation of the nonlinear model. Table 1 shows that the nonlinear model generates a negative
Kelly skewness, with mass below the median of the distribution covering nearly 60% of the total
distance from the 10th to the 90th percentiles. The credible sets of the skewness estimates are wide,
reflecting the difficulty in pinning down the magnitude of the higher-order moments. However,
the evidence indicates that the skewness is negative at the 68th percentile credible sets, as seen in
the table. This behavior continues to be the case at the 80th percentile sets as well. The second row
of the table shows the corresponding estimates for the linear-only model. With a linear process
and Gaussian shocks, the model cannot generate any skewness.

The next two columns in Table 1 show the estimates of the lower and upper tails of the distri-
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bution. As a reference, the mean of the factor by assumption is 0. The nonlinear model generates
a distribution that has higher probability on large declines in the credit cycle as opposed to large
increases. This asymmetric tail behavior is consistent with the negative skewness previously dis-
cussed. In comparison, the linear model generates symmetric tail behavior.

Underlying the skewness and tail risk behavior of themodel is a strong correlation between the
level and volatility components of the nonlinear factor. The second-to-last column of Table 1 shows
the model-implied correlation between the second-order factor, which enters into the level of the
nonlinear factor, and the square of the first-order factor, which determines the conditional volatility
of the innovations to the second-order factor. This correlation is −0.53, which suggests that the
conditional volatility of the credit cycle increases as the credit cycle declines. This result is again
consistent with the idea that credit expansions are smoother than credit contractions. Moreover,
it can also generate the negative skewness and long lower tails coupled with short upper tails we
see.

In addition to examining deviations from normality, we can compute the unconditional vari-
ance decomposition of the overall factor into its linear and nonlinear components. If the second-
order factor’s share of overall fluctuations is high, then it is further evidence that nonlinearities
play an important role in the credit cycle. The last column shows this variance decomposition for
the second-order factor. Its median estimate is around 10%, indicating a secondary, although still
quantitatively relevant, role. Similar to the results before, its credible set is wide.

State-Dependent and Asymmetric Effects of Shocks

Two key aspects of the nonlinear credit cycle are state-dependent and asymmetric responses
to shocks. Figure 7 shows the responses to one standard deviation positive and negative shocks to
the credit cycle factor. The red line and shaded areas are the responses from the nonlinear model,
while the blue line and shaded areas are the responses from the linear model. The first row shows
the effects of a positive shock, whereas the second row shows the effects of a negative shock. The
columns condition on the smoothed state estimates of three different periods: a boom period in the
mid-2000s, the bust after the GFC in 2010, and a mixed case leading into the early 1990s recession.

During the credit boom period, where both the first- and second-order factors were positive,
the expected path of the credit factor actually behaves similarly to the linear-only model. The per-
sistence of the first-order factor, governed by the hx parameter, has a posterior mean of 0.92, with
the nonlinear factor showing similar intertemporal dynamics. As we move to the credit crunch
period in 2010, the first- and second-order factors both were negative, which generates a response
to the shock that is more persistent and with a slight hump shape in the initial quarters. There is
a change in the conditional volatility of the shock when compared with the credit boom period as
well, with the magnitudes of the responses to the same-sized shock larger in the quarters after its
realization. These findings are consistent with the unconditional distribution results, which found
a negative relationship between the level of the credit factor and its conditional volatility. The fi-
nal column of the figure shows a mixed period before the early 1990s recession. The smoothed
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Figure 7: State-Dependent Impulse Response Functions in Three Periods
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NOTE: The red lines denote the responses of the overall factor following a positive shock (top row) and
negative shock (bottom row), while the blue lines denote the responses of the linear component of themodel.
The first column conditions on a credit boom period in the mid-2000s, the second column conditions on a
credit bust period in 2010, and the third column conditions on a mixed case before the early 1990s recession.
The shaded areas denote 68% credible sets.

first-order factor was positive but declining, while the second-order factor became negative. This
combination of states leads to a response to the credit factor shock that dies out more quickly com-
pared with both the credit boom and crunch states. This response is true both for a positive and
negative shock.

In summary, the nonlinear model exhibits evidence of state dependence in the responses to a
shock. The results are in line with theoretical predictions as well. When the credit cycle is strong, a
credit factor shock behaves approximately linearly. These times correspond to periods of slack bor-
rowing constraints and easy credit (Guerrieri and Iacoviello, 2017). Times immediately after credit
crunches generate amplification and persistence as borrowing constraints tighten. Our empirical
results suggest that dynamics in the data are consistent with these theories.

We also comment briefly on the asymmetry in the responses to positive versus negative shocks.
Across all of the periods, evidence indicates that a negative shock generates a larger and more
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persistent response when compared with a positive shock. Negative shocks lead to a response
approximately 10% larger in magnitude when compared with positive ones.15

Finally, we search for evidence of size dependencies in the response to a shock. We identify
two historical episodes in which the model estimates large shocks: 1980:Q2 and 2008:Q2. Then,
we ask whether a two standard deviation shock generates a different response when compared
with two times a one standard deviation shock during these times. We find little evidence of this
mechanism at play for either a positive or negative shock.
Higher-Order Moment Effects of Shocks

Figure 8 shows the higher-order moment effects of shocks. For these results, we condition on
the credit crunch state, although many of the qualitative features we discuss apply to the other
times as well.

A positive shock leads to an increase in the mean and a decline in the volatility of the credit
factor predictive distribution, as seen on the first two columns of the figure. As we move to the
last column, we see the effects that these shocks have on the tail risk of the predictive distribution.
The shortfall increases more than the longrise does because the increase in mean and decrease in
volatility both lead to the lower tail of the distribution shifting leftward. By contrast, these effects
partially cancel each other out on the upper end of the distribution, generating the more muted
response.

The bottom row shows the response to a negative shock. The responses flip in sign, with the
shock generating an increase in the volatility. Both the shortfall and longrise decline, with the
decline in the shortfall still greater than the decline in the longrise. Taken together, these results
suggest that a credit cycle shock produces largermoves in downside risk relative to upside risk. An
adverse credit cycle shock lowers the factor on average, and it also increases the risk of particularly
large declines due to an increase in volatility. In contrast, a positive shock increases the factor, on
average, and further decreases the risk of large declines due to a decline in volatility.

5 Conclusion
We propose a parsimonious NLDF model that is built around a pruned second-order factor equa-
tion. In this model, the propagation of shocks is asymmetric, state dependent, and size dependent,
and stationarity is guaranteed by construction. The application of the particle filter to evaluate
the likelihood and extract the factor allows us to augment the nonlinear factor motion with non-
linearities in the measurement equation, which makes the model applicable to macroeconomic
environments in which variables can be constrained.

We investigate the properties of the model and illustrate the nonlinear measurement equation,
estimating the shadow ratemodel à laWu andXia (2016)with ameasurement equation that specifies

15In Section E of the Appendix, we present results on the difference in the magnitudes between positive
and negative shocks.

32



Figure 8: Impulse Response Functions of the Mean, Standard Deviation, and Tail Risk
During the Credit Crunch
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NOTE: Impulse response functions of the mean, standard deviation, and 5% shortfall and longrise of the
demeaned overall factor produced by the nonlinear dynamic factor model during the credit crunch period
in 2010. The responses to a positive shock are shown in the top row, and the responses to a negative shock
are shown in the bottom row. In the third column, the blue lines denote the shortfall (SF) response, while
the red lines denote the longrise (LR) response. The shaded areas are 68% credible sets.

an ELB on U.S. data. We show how the extracted shadow rate factor and thus conclusions regarding
the monetary conditions differ between models: one with a nonlinear measurement equation and
second-order factor dynamics and another that is a standard linear factor model. The former pre-
dicts an easing of monetary conditions during the ELB period, while the latter does not provide
evidence of such.

Our credit cycle application emphasizes the importance of a second-order component when
measuring the credit cycle. This nonlinearity leads to state-dependent IRFs and changes in the
higher-order moments in response to shocks.

Our work can be expanded in several directions. We mentioned already the multidimensional
factor in the main text. Another fruitful avenue is to use the NLDF model with a VAR in the same
fashion as the factor-augmented vector autoregression model (Stock and Watson, 2016).
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Appendices

A Estimation Algorithms
In this section of the appendix, we provide further details about the two estimation algorithms
that we use. The first one is a Metropolis Hastings algorithm using the particle filter. The second
is a particle Gibbs sampling algorithm. We refer to our benchmark NLDF model, shown again in
Equation 24 for convenience.

yt = Gft + ηεt
ft = c+ fft + f st

fft = hxf
f
t−1 + σνt

f st = hxf
s
t−1 + 1

2hxx

(
fft−1

)2
.

(24)

Here, we assume that c = −1
2

hxxσ2

(1−hx)(1−h2x)
.

A.1 Metropolis Hastings with Bootstrap Particle Filter

Our Metropolis Hastings algorithm is as follows:

1. Propose a new set of parameters Θprop =
{
Gprop, ηprop, hpropx , hpropxx , σ2,prop

}
.

• In practice, we break up the proposals into three blocks: Block 1 (factor equation)
Θprop

1 =
{
hpropx , hpropxx , σ2,prop

}
; Block 2 (measurement equation loadings)Θprop

2 = {Gprop};
and Block 3 (measurement equation variances)Θprop

3 = {ηprop}. For each block, we take
50 draws, holding the parameters in the other blocks at their previously accepted val-
ues.

Θprop
i = Θcurr

i + 0.95Si,1ζ1 + 0.05Si,2ζ2, ζi ∼ N(0, I) i = 1, 2, 3, 4

• We tune the variance-covariance matrix of the proposals Si,1 and Si,2 in an adaptive
fashion over the first 30, 000draws of the algorithm. Si,1 is calculatedusing the variance-
covariancematrix from all of the previous drawsmultiplied by a scaling parameter that
decreases if the previous 250 draws within the block had an acceptance rate less than
10%. Si,2 is a diagonalmatrix that ismeant to introduce some independent noisewithin
the proposal. It is multiplied by a separate scaling parameter that decreases if the pre-
vious 250 draws within the block had an acceptance rate less than 10%.
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2. Evaluate the likelihoodof the proposedparameters using the bootstrapparticle filter (Särkkä,
2013).

• Initialize the particle filter: For particles j = 1, ..., N . To take a draw from the uncondi-
tional distribution, we simulate themodel for 500periods and use the final period of the
simulation to determine: ff,(j)0 , f

s,(j)
0 , f

s,(j)
1 . Note that fs,(j)1 is a function of ff,(j)0 , f

s,(j)
0 ,

so it is known. We set w(j)
t = 1 for all particles.

For t = 1, ..., T :

• Prediction step:

Given particles and weights at t− 1:
{
f
f,(j)
t−1 , f

s,(j)
t , w

(j)
t−1

}
.

(a) For particles j = 1, ..., N . Draw a new particle
{
f
f,(j)
t , f

s,(j)
t+1

}
from

f
f,(j)
t = hxf

f,(j)
t−1 + σνt

f
s,(j)
t+1 = hxf

s,(j)
t +

1

2
hxx

(
f
f,(j)
t

)2
.

(b) Calculate weights:

ω
(j)
t = p(yt|ff,(j)t , f

s,(j)
t ), j = 1, . . . , N.

• Update step:

(a) Define normalized weights: w̃(j)
t =

ω
(j)
t w

(j)
t−1

1
N

∑
ω
(j)
t w

(j)
t−1

.

(b) Resample from multinomial distribution
{
ω
(j)
t , w̃

(j)
t

}
and set w(j)

t = 1.

• Compute conditional likelihood:

p(yt|Y1:t−1) ≈
1

N

N∑
i=1

ω
(j)
t w

(j)
t−1. (25)

The overall likelihood is then p(y|Θprop
i ,Θcurr

−i ) =
∏T
t=1 p(yt|Y1:t−1).

3. We accept the proposal with probability

prob = max

{
p(y|Θprop

i ,Θcurr
−i )g(Θprop

i ,Θcurr
−i )

p(y|Θcurr
i ,Θcurr

−i )g(Θcurr
i ,Θcurr

−i )
, 1

}
(26)

where g(.) is the prior distribution.

A.2 Gibbs Sampling with Particle Smoother

Our Gibbs sampling algorithm is as follows:
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1. Draw G, η given fft , fst , and yt. This step follows a standard linear regression model.

2. Draw hx, hxx given σ, G, η, fft , fst , and yt.

We use a randomwalkMetropolis step to draw hx and hxx. Given the current accepted draw
of hx and hxx, our proposal is as follows:

hpropx

hpropxx

 =

 hx

hxx

+ Shζ, ζ ∼ N(0, I).

We throw away draws that violate the stationarity conditions hpropx > 1.

Given proposed hpropx and hpropxx , we calculate its likelihood. The new parameters change c
and fst .

We update

cprop = −1

2

hpropxx σ2

(1− hpropx )
(

1− (hpropx )
2
)

and

f s,propt = hpropx fs,propt−1 +
1

2
hpropxx

(
fft−1

)2
.

We initialize fs,prop0 = fs0 .

We then form the likelihood of the proposal, which can be calculated in two parts. The first
is based on the measurement equation and the second is from the transition equation of the
first-order factor:

yt −G
(
cprop + fft + f s,propt

)
= ηεt

fft − hpropx fft−1 = σνt.
(27)

We accept the proposal with probability:

prob = max


∏T
t=1 p

(
yt|cprop, G, η, fft , f

s,prop
t

)
ptrans

(
fft |h

prop
x , σ, fft−1

)
g (hpropx , hpropxx )∏T

t=1 p
(
yt|ccurr, G, η, fft , fst

)
ptrans

(
fft |hcurrx , σ, fft−1

)
g (hcurrx , hcurrxx )

, 1


(28)

where p(yt|.) denotes the likelihood from the measurement equation, ptrans(fft |.) denotes
the likelihood from the transition equation, and g(.) is the prior distribution.
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3. Draw σ2 given G, η, fft , fst , and yt.

We draw σ2 using a random walk Metropolis step. Given the current accepted draw of σ2,
our proposal is as follows:

σ2,prop = σ2 + Sσι, ι ∼ N(0, I).

We throw out draws that are negative.

Given the proposed σ2,prop, we calculate its likelihood. The new parameters change c.

We update

cprop = −1

2

hxxσ
2,prop

(1− hx) (1− h2x)
. (29)

We then form the likelihood of the proposal, which can be calculated in two parts. The first
is based on the measurement equation, and the second is from the transition equation of the
first-order factor:

yt −G
(
cprop + fft + fst

)
= ηεt

fft − hxf
f
t−1 = σpropνt.

(30)

We accept the proposal with probability:

prob = max


∏T
t=1 p

(
yt|cprop, G, η, fft , fst

)
ptrans

(
fft |hx, σ2,prop, f

f
t−1

)
g
(
σ2,prop

)
∏T
t=1 p

(
yt|ccurr, G, η, fft , fst

)
ptrans

(
fft |hx, σ2,curr, f

f
t−1

)
g (σ2,curr)

, 1

 (31)

where p(yt|.) denotes the likelihood from the measurement equation, ptrans(fft |.) denotes
the likelihood from the transition equation, and g(.) is the prior distribution.

4. Draw fft , f
s
t given σ, G, η, hx, hxx, and yt using the particle Gibbs sampler with ancestor

sampling. We discuss our implementation of the sampler here, but further details of the
algorithm can be found in Lindsten et al. (2014).

• Initialize particle smoother: For particles j = 1, ..., N − 1. To take a draw from the
unconditional distribution, we simulate the model for 500 periods and use the final
period of the simulation to determine: ff,(j)0 , f

s,(j)
0 , f

s,(j)
1 . Note that fs,(j)1 is a function

of ff,(j)0 , f
s,(j)
0 , so it is known.
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• Draw first period: For particles j = 1, ..., N − 1. We determine ff,(j)1 , f
s,(j)
2 by simula-

tion.

• Fix final particle: Fix ff,(N)
0 , f

s,(N)
0 , f

f,(N)
1 , f

s,(N)
1 , and fs,(N)

2 equal to ff,∗0 , fs,∗0 , ff,∗1 , fs,∗1 ,

and fs,∗2 , where ∗ denotes the accepted previous draw.

• Set weights: Compute w(j)
1 =

p(y1|ff,(j)1 ,f
s,(j)
1 )∑N

jj=1 p(y1|f
f,(jj)
1 ,f

s,(jj)
1 )

for j = 1, ..., N .

For t = 2, ..., T :

• Sample indices to set ancestors for each particle: For particles j = 1, ..., N − 1. Draw
a
(j)
t from the distribution wt−1. Simulate the following:

f
f,(j)
t = hxf

f,(a
(j)
t )

t−1 + σνt

f
s,(j)
t+1 = hxf

s,a
(j)
t

t +
1

2
hxx

(
f
f,(j)
t

)2 (32)

• Fix the final particle: Fix ff,(N)
t equal to ff,∗t .

• Compute auxiliary weights for the fixed particle: For j = 1, ..., N . We compute the
auxiliary weights for the fixed particle as follows:

w
aux,(j)
t = w

(j)
t−1p(yt|f

f,(N)
t , f

s,(j)
t )g(f

f,(N)
t |ff,(j)t−1 )p(yt+1|ff,(N)

t+1 , f
s,(N ′)
t+1 )g(f

f,(N)
t+1 |f

f,(N)
t ).

(33)

When calculating fs,(N
′)

t+1 , we have to take into account that fs,(N
′)

t+1 depends on f s,(j)t .
Therefore, fs,(N

′)
t+1 does not equal fs,(N)

t+1 . The formula is

f
s,(N ′)
t+1 = hxf

s,(j)
t +

1

2
hxx

(
f
f,(N)
t

)2
. (34)

Note that this formula comes from Equation 23 in Lindsten et al. (2014) with lag = 2.
Our model is a degenerate state-space model discussed in Section 7.2 of that paper. We
can view our model alternatively as a non-Markovian model with one factor fft . See
the associated discussion there.

• Sample the associated ancestor index for particle N : We sample a(N)
t from the distri-

bution wauxt . Note that we have to update fs,(N)
t+1 to make it consistent with the selected

ancestor:

f
s,(N)
t+1 = hxf

s,(a
(N)
t )

t +
1

2
hxx

(
f
f,(N)
t

)2
. (35)

• Set weights: Compute w(j)
t =

p(yt|ff,(j)t ,f
s,(j)
t )∑N

jj=1 p(yt|f
f,(jj)
t ,f

s,(jj)
t )

for j = 1, ..., N .
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Note that for the t = T , we do not have to update f st+1 because it is the end of the
sample. When computing the auxiliary weights for the fixed particle, we also do not
consider the T + 1 likelihood.

• Sample selected states: Sample ∗ according to wT . Set ff,∗t , fs,∗t equal to the sampled
state.
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B Monte Carlo Results
To better understand the estimation of our model, we turn to a Monte Carlo experiment. Here,
we show that if the true data-generating process is the NLDF model, our estimation strategy suc-
cessfully recovers all parameters. We assume that the underlying model is our benchmark NLDF
model with the following parameters: c = 0, hx = 0.85, hxx = 2.15 , σ = 0.18, diag(η) =

[0.54, 0.06, 0.79, 1.08, 0.39], and G = [1, 0.17, 1.5, 2.21, 0.56]. We generate 50 series of length T =

1000, starting from ff0 = 0, fs0 = 0.
With the synthetic data in hand, we then estimate the linear factor model and our benchmark

NLDFmodel with a linear measurement equation. Themodels are estimated using theMetropolis
Hastings and particle filter procedure detailed in Section 2.4 with 200, 000 Markov Chain Monte
Carlo draws. We assume flat priors for all of the parameters.

The parameter estimates converge to the true values under correct specification. As seen in the
left panel in Figure 9, the log likelihood is higher for the nonlinear model (vertical axis) than it is
for the linear one (horizontal axis) across all simulations. The average difference between the log
likelihoods in the nonlinear and linear models is 80 points; the difference can be as low as 48 points
and as high as 127 points. Correspondingly, the mean square errors of the factors are smaller in
the nonlinear factor version (right panel in Figure 9).16

We report the estimates of the state equation’s parameters in Figures 10 and 11. Whereas the
nonlinear factor model’s estimate for hx (y-axis) is clustered around its true value, the linear esti-
mate (x-axis) is about 14%more persistent. This over-persistence is compensated for with a down-
ward bias estimate of the factor innovation volatility. This compensation is needed so the factor
delivers second moments consistent with the data. In contrast, the volatility estimate from the
NLDF model is around the true value. Furthermore, the second-order component (hxx) is esti-
mated close to its true value.

-3350 -3300 -3250 -3200 -3150 -3100 -3050 -3000

Log likelihood (Linear model)

-3350

-3300

-3250

-3200

-3150

-3100

-3050

-3000

L
o

g
 l
ik

e
lih

o
o

d
 (

N
o

n
lin

e
a

r 
m

o
d

e
l)

0.026 0.028 0.03 0.032 0.034 0.036 0.038

MSE (Linear model)

0.026

0.028

0.03

0.032

0.034

0.036

0.038

M
S

E
 (

N
o

n
lin

e
a

r 
m

o
d

e
l)

Figure 9: Performance of Estimated Linear and Nonlinear Models on Simulated Data

16The mean square error is defined as
∑T=1000

t=1 (f̂t|t−ft)2

T , where f̂t|t is the factor filtered from the estimated
model (linear or nonlinear), and ft is the true simulated factor.
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Figure 10: Estimation Bias of Linear and Nonlinear Models on Simulated Data

Figure 11: Performance of Nonlinear Model in Estimation of hxx on Simulated Data
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C Further Simulation Results

-6 -4 -2 0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

NLDF
First-order

Figure 12: Unconditional distribution of the overall factor in a calibrated model. The blue line denotes
the unconditional distribution of the demeaned overall factor in the nonlinear dynamic factor model. The
dashed black line denotes the unconditional distribution of the first-order factor.
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Figure 13: Dynamics of the distribution of the demeaned overall factor at various periods after a shock in
a calibrated model. The blue line is the distribution after a negative shock, and the dashed black line is the
distribution without a shock. Period 0 is the period of the shock.
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Figure 14: Impulse response functions of the mean, standard deviation, and tail risk of the demeaned
overall factor in response to a negative shock at period 0 in a calibrated model. In the third panel, the blue
line shows the response of the shortfall, and the red line shows the response of the longrise.
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D Shadow Rate: Additional Results

D.1 Details on Data Construction

We followed the approach of Wu and Xia (2016) in constructing the one-month forward rates for
seven maturities based on the nominal yield curve data from Gurkaynak et al. (2007). We use
the code provided by Wu and Xia (2016). The end-of-month monthly data spans the period from
January 1990 to September 2019, and the maturities used are the same as in the original paper: 3
and 6 months and 1, 2, 5, 7, and 10 years.

We download the Wu and Xia (2016) shadow rate from Cynthia Wu’s website.

D.2 Tailoring the Estimation to the Shadow Rate Model

We discuss here how we modify the estimation presented in Appendix Section A.1 to account for
the nonlinear measurement equation in Equation 22, reproduced below for convenience.

∆forwardht = mh +

Gh(c+ fft + fst ) + ηhεht if Ŝht >= 0.3

−mh + ηhεht otherwise
(36)

where c = −1
2

hxxσ2

(1−hx)(1−h2x)
, Ŝht =

∑t
τ=2

(
mh +Gh

(
c+ ffτ + fsτ

))
+ forwardh1 , ∆forwardht =

forwardht −forwardht−1, and index h stands for the maturity. Wemodel the latent factor according
to our second-order dynamics:

fft = hxf
f
t−1 + σνt (37)

f st = hxf
s
t−1 +

1

2
hxx

(
fft−1

)2
.

Relative to the benchmark NLDF with a linear measurement equation, there are three main
differences. First, we have forward-rate-specific constants mh that capture the long-run mean of
each series. This is a straightforward addition to the Metropolis Hastings algorithm, and we add a
block to the estimation procedure. Second, we have to keep track of Ŝt in the particle filter, which is
the sum of the entire path of the particle. To account for this sum, we add an additional component
to the particle called

Ŝ
(j)
t =

(
c+ f

f,(j)
t + f

s,(j)
t

)
+ Ŝ

(j)
t−1.

The conversion from Ŝ
(j)
t to Ŝh,(j)t for each maturity h is straightforward from their respective

formulas.
Third, the measurement equation that we use to evaluate the weight of the particle in the par-

ticle filter changes depending on whether Ŝh,(j)t is greater than or less than 0.3. This feature affects
the prediction step in our algorithm.
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D.3 Estimation of the Linear Model

We also estimate a linear version of the model that removes the nonlinearity in the measurement
equation and only allows for first-order factor dynamics. We use the same Metropolis Hastings
scheme as laid out in Appendix Section A.1, with two differences. First, we have the extra param-
eters mh that we estimate as an additional block. Second, we use the Kalman Filter instead of the
particle filter to estimate the model, as it is now a linear Gaussian state-space model.
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D.4 Parameter Estimates

Table 2: Parameter Estimates

Prior NLDFM and ELB Linear factor and ELB Linear
hx N(0.5, 1) 0.192 0.183 0.188

( 0.132 , 0.249 ) ( 0.118 , 0.242 ) ( 0.126 , 0.261 )
hxx N(0, 5) 0.272 0.000 0.000

( -0.010 , 0.474 ) ( 0.000 , 0.000 ) ( 0.000 , 0.000 )
σ2 IW (v = 4, η = 1) 0.050 0.055 0.031

( 0.045 , 0.056 ) ( 0.048 , 0.062 ) ( 0.026 , 0.035 )
G1 N(0, 5) 1.000 1.000 1.000

( 1.000 , 1.000 ) ( 1.000 , 1.000 ) ( 1.000 , 1.000 )
G2 N(0, 5) 1.171 1.110 1.290

( 1.121 , 1.218 ) ( 1.059 , 1.174 ) ( 1.209 , 1.383 )
G3 N(0, 5) 1.410 1.354 1.623

( 1.356 , 1.464 ) ( 1.306 , 1.422 ) ( 1.542 , 1.735 )
G4 N(0, 5) 1.466 1.385 1.704

( 1.418 , 1.513 ) ( 1.300 , 1.483 ) ( 1.607 , 1.827 )
G5 N(0, 5) 1.022 0.947 1.123

( 0.944 , 1.099 ) ( 0.860 , 1.034 ) ( 1.011 , 1.248 )
G6 N(0, 5) 0.779 0.775 0.809

( 0.708 , 0.871 ) ( 0.682 , 0.878 ) ( 0.686 , 0.920 )
G7 N(0, 5) 0.635 0.616 0.575

( 0.580 , 0.706 ) ( 0.537 , 0.712 ) ( 0.451 , 0.685 )
η21 IW

(
v = 4, η = 1

5Std
(
∆forward1

))
0.015 0.016 0.019

( 0.013 , 0.016 ) ( 0.014 , 0.017 ) ( 0.018 , 0.021 )
η22 IW

(
v = 4, η = 1

5Std
(
∆forward2

))
0.008 0.008 0.010

( 0.007 , 0.009 ) ( 0.008 , 0.009 ) ( 0.009 , 0.011 )
η23 IW

(
v = 4, η = 1

5Std
(
∆forward3

))
0.002 0.001 0.002

( 0.001 , 0.002 ) ( 0.001 , 0.002 ) ( 0.002 , 0.003 )
η24 IW

(
v = 4, η = 1

5Std
(
∆forward4

))
0.013 0.013 0.015

( 0.012 , 0.015 ) ( 0.012 , 0.015 ) ( 0.014 , 0.017 )
η25 IW

(
v = 4, η = 1

5Std
(
∆forward5

))
0.043 0.045 0.055

( 0.039 , 0.047 ) ( 0.041 , 0.051 ) ( 0.050 , 0.061 )
η26 IW

(
v = 4, η = 1

5Std
(
∆forward6

))
0.057 0.058 0.070

( 0.052 , 0.064 ) ( 0.052 , 0.064 ) ( 0.065 , 0.078 )
η27 IW

(
v = 4, η = 1

5Std
(
∆forward7

))
0.063 0.064 0.071

( 0.058 , 0.068 ) ( 0.059 , 0.072 ) ( 0.065 , 0.079 )

Median values of the posterior are reported. 10% and 90% are shown in brackets. Log likelihoods are
reported at the mode. NLDFM is nonlinear dynamic factor model. ELB is effective lower bound.
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Prior NLDFM and ELB Linear factor and ELB Linear
m1 N(−0.019, 1) -0.019 -0.020 -0.019

( -0.021 , -0.017 ) ( -0.022 , -0.017 ) ( -0.024 , -0.014 )
m2 N(−0.019, 1) -0.021 -0.020 -0.019

( -0.023 , -0.019 ) ( -0.022 , -0.018 ) ( -0.024 , -0.015 )
m3 N(−0.019, 1) -0.022 -0.021 -0.019

( -0.025 , -0.020 ) ( -0.024 , -0.019 ) ( -0.024 , -0.015 )
m4 N(−0.019, 1) -0.022 -0.020 -0.019

( -0.025 , -0.019 ) ( -0.024 , -0.018 ) ( -0.024 , -0.015 )
m5 N(−0.019, 1) -0.010 -0.008 -0.019

( -0.012 , -0.008 ) ( -0.011 , -0.006 ) ( -0.024 , -0.014 )
m6 N(−0.019, 1) -0.007 -0.007 -0.019

( -0.009 , -0.005 ) ( -0.009 , -0.005 ) ( -0.025 , -0.014 )
m7 N(−0.019, 1) -0.005 -0.005 -0.019

( -0.007 , -0.004 ) ( -0.007 , -0.004 ) ( -0.024 , -0.014 )
LL 723.731 723.742 636.693

Median values of the posterior are reported. 10% and 90% are shown in brackets. Log likelihoods are
reported at the mode. NLDFM is nonlinear dynamic factor model. ELB is effective lower bound.
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E Nonlinear Credit Cycle: Additional Results

E.1 Details on Data Construction

Our data extend from 1952:Q1 through 2021:Q4 at a quarterly frequency. Our data are from the
Statistical Release Z.1 “Financial Accounts of the United States” and were downloaded from the
Federal Reserve Bank of St. Louis, Federal Reserve Economic Data. These data are not seasonally
adjusted, and we seasonally adjust them using the Census X-13 Seasonal Adjustment procedure
implemented in Eviews 12. We deflate the seasonally adjusted data by the seasonally adjusted
GDP deflator to turn them into real values.

U.S. Credit Growth by Sector
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Government

Figure 15: Normalized real credit growth by sector in the United States: 1952:Q1-2021:Q4 with National
Bureau of Economic Research recession shading.

For nonfinancial business debt, we use the category Nonfinancial Business, Debt Securities and
Loans, Liability, Level (BOGZ1FL144104005Q). For household debt, we use the category House-
holds and Nonprofit Organizations, Debt Securities and Loans, Liability, Level (TCMILBSHNO).
For financial-sector debt, we use the category Domestic Financial Sectors, Debt Securities and
Loans, Liability, Level (TCMDODFS). Finally, for government debt, we sum the categories Fed-
eral Government, Debt Securities and Loans, Liability, Level (FGTCMDODNS) and State and Local
Governments, Debt Securities and Loans, Liability, Level (SLGTCMDODNS).We seasonally adjust
the federal and state and local government debt separately before summing them up.
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E.2 Difference Between Positive and Negative Shocks
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Figure 16: Credit Boom State (mid-2000s): Draw-by-draw differences between positive and negative
shocks on the mean, standard deviation, and tail risk responses. Shaded areas denote 68% credible sets.
SF is shortfall and LR is longrise.
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Figure 17: Credit Crunch State (2010): Draw-by-draw differences between positive and negative shocks on
the mean, standard deviation, and tail risk responses. Shaded areas denote 68% credible sets. SF is shortfall
and LR is longrise.
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Figure 18: Credit Mix State (before the early 1990s recession): Draw-by-draw differences between positive
and negative shocks on the mean, standard deviation, and tail risk responses. Shaded areas denote 68%
credible sets. SF is shortfall and LR is longrise.
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E.3 Parameter Estimates

Table 3: Parameter Estimates

Prior NLDFM
hx N(0.5, 1) 0.922

( 0.901 , 0.938 )
hxx N(0, 5) -0.130

( -0.223 , -0.053 )
σ2 IW (v = 4, η = 1) 0.062

( 0.050 , 0.077 )
G1 N(0, 5) 1.000

( 1.000 , 1.000 )
G2 N(0, 5) 1.318

( 1.162 , 1.470 )
G3 N(0, 5) 0.983

( 0.881 , 1.100 )
G4 N(0, 5) -0.220

( -0.327 , -0.116 )
η21 IW (v = 4, η = 1) 0.626

( 0.551 , 0.698 )
η22 IW (v = 4, η = 1) 0.282

( 0.234 , 0.347 )
η23 IW (v = 4, η = 1) 0.592

( 0.537 , 0.651 )
η24 IW (v = 4, η = 1) 0.968

( 0.888 , 1.05 )

Median values of the posterior are reported. 16% and 84% are shown in brackets. NLDFM is nonlinear
dynamic factor model.
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