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Dynamic Panel Data (DPD) model
Consider the N × T data matrix

Y = {yit} , i = 1, . . . ,N, t = 1, . . . ,T .

In many panel data settings, we have big N and small T .

To accommodate both panel and dynamic structures in the panel,
typically the DPD model is considered

yit = ci + λ · yi ,t−1 + β · xit + εit ,

with the usual assumptions, and where ci can be treated as fixed
effects or random effects.

DPD model can be extended with time index effects dt to obtain

yit = ci + dt + λ · yi ,t−1 + β · xit + εit .
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Dynamic Panel Data Model

We propose another treatment of, in particular, the dynamic
features in the DPD model.

We consider a model with unobserved factor error structures,
see discussions in book of Pesaran (2015), Chapters 26 and 27.

Furthermore, we do not rely on GMM estimation and on the use of
instruments. We do (transformed) maximum likelihood.

Hence, most coefficients are estimated via standard regression.

We start with the basic panel regression model

yit = µt + ci + β xit + εit ,

where the lag-dependent variables are removed and the fixed time
effects dt are replaced by the stochastic dynamic process µt .
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Dynamic Panel Data Model

We have the basic panel model

yit = µt + ci + β xit + εit ,

where the unobserved component µt can be represented by a
stationary ARMA process or a nonstationary ARIMA process.
Basic examples are the AR(1) process

µt = λµt−1 + ηt , −1 < λ < 1,

and the random walk process

µt = µt−1 + ηt ,

with ηt being an IID noise term. The overall statistical treatment
is similar, whether the process for µt is stationary or nonstationary.
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Static formulation
We can represent the basic panel model yit = µt + ci + β xit + εit
by the static representation

yit = ci + β xit + uit , uit = µt + εit ,

where we have that each uit follows an AR(I)MA process.

The model representation in first differences is given by

∆yit = β∆xit + ∆uit ,

where we notice that ∆uit still follows an AR(I)MA process.

Estimation can be based on both representations, leading to
random effects (E(xitujt) = 0, between/within estimation) or
fixed effects (E(xitujt) 6= 0, differences estimation).

In both cases, basic adjustments are required to allow for the
ARIMA process of uit : regression with ARMA errors.
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Likelihood approach

We adopt the method of maximum likelihood (ML).

We will argue that even for large N and moderate T , the ML
approach is feasible. This development follows closely the approach
taken by Hsiao, Pesaran and Tahmiscioglu (2002) in the panel
literature, and Harvey and Marshall (1991) and Marshall (1992) in
the time series literature.

Our approach provides estimates of time-varying effects such as µt .
Also forecasts can be generated based on the DPD model with
stochastic trends.
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Dynamic factor model perspective
The basic DPD model with stochastic trends

yit = µt + ci + bi xit + εit ,

can be regarded as a close variant of the dynamic factor model

yit = ci + γi µt + εit ,

with “loadings” γi , without regression effects, and µt representing
the dynamic factor, see Engle and Watson (1983), Bai and Ng
(2002), Doz et al. (2012) and many many others.

The focus here is on the treatment of the DPD model with
stochastic trends.

The inclusion of the loadings γi is not made explicit throughout
but can be treated.

The generalization to multiple stochastic trends (multiple dynamic
factors) is also treated.
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Time-varying regression effects

The DPD model can accommodate other time-varying effects.
Hence, we also consider time-varying regression coefficients and
obtain the DPD model

yit = µt + ci + (βt + bi ) xit + εit ,

where the time-varying parameters µt and βt follow linear dynamic
stochastic processes while ci and bi can be treated as fixed or
random coefficients.
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Panel model with time-varying effects

In our model with time-varying effects

yit = µt + ci + (βt + bi ) xit + εit ,

the treatment of ci and bi can depend on N and T :

• N << T : treat ci and bi as fixed coefficients

• N >> T : treat ci and bi as random coefficients, that is

ci ∼ NID(c , σ2c ), bi ∼ NID(b, σ2b).

The maximum likelihood treatment can accommodate both
approaches and only small modifications are needed.

A particular concern is identification of coefficients and
initialization: c versus µ1 and b versus β1.
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Panel model with stochastic trends
The panel model with a single explanatory variable xit and
time-varying effects

yit = µt + ci + (βt + bi ) xit + εit ,

can be represented as a regression model for

yt = ( y1t , y2t , . . . , yNt )′,

and given by
yt = Xtδ + ut ,

with

Xt = [IN , diag( x1t , x2t , . . . , xNt )], δ = (c1, . . . , cN , b1, . . . , bN),

and

ut = 1µt + xt βt + εt , xt = ( x1t , x2t , . . . , xNt )′.
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Regression model formulation
For the basic panel model yit = µt + ci + (βt + bi ) xit + εit and its
vector representation

yt = Xtδ + ut ,

with

Xt = [IN , diag( x1t , x2t , . . . , xNt )], δ = (c1, . . . , cN , b1, . . . , bN).

For a fully pooled model, ci = c and bi = b, we have Xt = [1, xt ]
and δ = (c , b)′. The error

ut = 1µt + xt βt + εt , xt = ( x1t , x2t , . . . , xNt )′.

implies that

Var(ut) = Ω0(X , ψ), Cov(ut , ut−j) = Ωj(X , ψ), j = 1, 2, . . . .

To accommodate the heteroskedastic autocovariance structure of
ut , we apply generalized least squares (GLS) to

y = X δ + u, u ∼ NID(0,Ω), Ω = Ω(X , ψ).

11 / 54



Generalized Least Squares
The application of GLS to

y = X δ + u, u ∼ NID(0,Ω), Ω = Ω(X , ψ).

with the error

ut = 1µt + xt βt + εt , xt = ( x1t , x2t , . . . , xNt )′.

faces a complicated covariance structure for Ω, making the
treatment of GLS infeasible because it requires e.g. the Choleski
decomposition Ω = LL′ such that OLS can be applied to

vy = VX δ + vu, vu ∼ NID(0, I ),

where (vy ,VX , vu) = L−1(y ,X , u).

However, it turns out that these Choleski calculations are easily
done recursively by the Kalman filter.
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State space representation of error

The error expression

ut = 1µt + xt βt + εt , xt = ( x1t , x2t , . . . , xNt )′.

can be represented in state space form, that is

ut = Zt αt + εt , αt = Aαt−1 + ηt ,

and initial condition α1 ∼ NID(a,P). In case of the ut expression,
we have

Zt = (1, xt), αt = (µt , βt)
′,

and matrix A = A(ψ) is determined by the dynamic properties
given to µt and βt .

We notice that ut is a N × 1 vector and can be of high dimension
while the state vector αt is of low dimension (here two elements).
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GLS via Kalman filter
The Kalman filter can be applied to the state space model

ut = Zt αt + εt , αt = Aαt−1 + ηt ,

and will effectively carry out the Choleski decomposition Ω = LL′

and the corresponding transformation

vu = L−1u.

When we replace u by y and each column of X consecutively, each
application of the Kalman filter for a different “u”, will lead to the
computation of

(vy ,VX ) = L−1(y ,X ),

which are used in the OLS calculations applied to

vy = VX δ + vu, vu ∼ NID(0, I ),

which delivers the GLS estimation of δ.
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GLS and MLE via Kalman filter

The Kalman filter can only be applied to the state space model

ut = Ztαt + εt , αt = Aαt−1 + ηt ,

when “system” matrices A = A(ψ), Var(εt ;ψ) and Var(ηt ;ψ) are
known. For a any given value of ψ, we can treat these as known.

We then estimate ψ, via the full maximum likelihood estimator

ψ̂ML = argψ max

{
−NT

2
[log 2π + log |F |+ (v ′F−1v)]

}
where v = vy − VX δ̂GLS and F =Var(vu) is also obtained from the

Kalman filter. The MLE ψ̂ is obtained via numerical optimization.
Function evaluation relies on Kalman filter and OLS computations.
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Panel model with stochastic trends:
discussion

• We propose a “transformed” likelihood-based approach to
dynamice panel data models with time-varying effects or
“unobserved factor error structures” using Kalman filtering

• This approach is somewhat similar to Hsiao, Pesaran and
Tahmiscioglu (2002)

• Our implementation is different: it relies on Kalman filtering

• The use of the Kalman filter to “transform” the data before
carrying out a regression goes back to Rosenberg (1973), and
is well recognised in the work of Harvey (1989), de Jong
(1988, 1991) and Durbin and K (2012).
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Panel model with stochastic trends:
discussion

• A clear advantage of the Kalman filter approach is that the
“transformation” does not only make GLS feasible, it also
allows for likelihood evaluation and . . .

• . . . for signal extraction: the estimation of time-varying effects
(state vector) using corresponding smoothing methods.

• And it allows for Forecasting !!

• This approach is valid in cases of treating ci and bi as fixed
effects or as random effects.

• The implementation requires some further discussion.
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Panel model with time-varying effects
• In cases of treating ci and bi as fixed effects, we obtain an

X matrix with more columns which necessitates more
transformations by the Kalman filter. Notice that only the
“mean” part of the Kalman filter needs to be repeated,
leading to huge computational gains.
• Depending on the application and organization of the data,

the methods can also treat “group” estimation.
• However 1, when N is big, we will resort to random effects,
ci ∼ NID(c , σ2c IN) and bi ∼ NID(b, σ2bIN). The means c and
b will be treated by GLS as pooled coefficients. The
“variance” part will lead to a more complicated variance
matrix for εt , from σ2ε IN to

σ2ε IN + σ2c11′ + σ2bxt x
′
t .

The non-diagionality of Var(εt) can be treated by the Kalman
filter straightforwardly.
• However 2, . . .
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Panel model with time-varying effects
When Kalman filter is applied to a multivariate model with big N,
we have two options:

(a) filtering and updating, equation by equation

(b) collapsing the observation vector, via transformation

These options can also be done jointly.

In case of (a), we are avoiding inverting N × N matrices in the
Kalman filter. It can only be done straightforwardly when Var(εt)
is diagonal, otherwise further transformations are needed.

In case of (b), the dimension of the observation vector is reduced
to the dimension of the state vector (here 2× 1).
The computations become slightly more involved but huge
computational gains are the reward.

For more detailed discussions on this, see K and Durbin (2004) and
Jungbacker and K (2015).
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Review of our model

In our dynamic panel data model with time-varying effects

yit = µt + ci + (βt + bi ) xit + εit ,

where we treat both µt and βt as random walk processes, that is

µt = µt−1 + ηt , βt = βt−1 + κt ,

and we will treat ci and bi as random coefficients, that is

ci ∼ NID(c , σ2c ), bi ∼ NID(b, σ2b).

The identification issues are resolved by the initializations:
µ1 = β1 = 0, fixed.
Hence, estimates of c and b are interpreted as those in first year.
Alternatively, we can set these to µT = βT = 0.
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Illustrations

To illustrate this panel approach, we present two case studies:

• US Philips-Curve using inflation time series of US States. This
is joint work with Marente Vlekke (CPB Netherlands Institute
for Economic Policy Analysis, The Hague).

• Global Measure of Ethane using weather station data around
the globe. This is joint work with Marina Friedrich (VU),
Yicong Lin (VU), Emmanuel Mahieu (ULiège) and Stephan
Smeekes (Maastricht U).

In both cases T > N, but the methods do not prohibit their use in
cases with T << N.

21 / 54



US Phillips-Curve, 1978-2017

This illustration is motivated by recent publication of Hazell,
Herreño, Nakamura and Steinsson in their paper “The Slope of the
Phillips Curve: Evidence from U.S. States”, in Quarterly Journal of
Economics, August 2022.

Basic Phillips-Curve regression model is given by

πt = c + bUt + γπEt + εt ,

where πt is an inflation measure, Ut is output gap and πEt is
expected inflation in the long-term. This model is heavily adopted
with mixed results and findings.

Issue 1: identification problem due to covarying Ut and πEt ; see
discussion in Mavroeidis, Plagborg-Moller and Stock (2014).

Issue 2: classic simultaneity problem in distinguishing demand /
supply shocks.
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US Phillips-Curve, 1978-2017

This illustration is motivated by recent publication of Hazell,
Herreño, Nakamura and Steinsson in their paper “The Slope of the
Phillips Curve: Evidence from U.S. States”, in Quarterly Journal of
Economics, August 2022.

Similar to Fitzgerald and Nicolini (2014) and McLeay and Tenreyro
(2019), they use regional data and overcome a simultaneity
problem: central banks cannot offset regional demand shocks using
a single national interest rate.

They use US States data and make it available on their websites.
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Quarterly Inflation by US States,
1978-2017
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Quarterly Unemployment by US States,
1978-2017
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Country panel for US Inflation

The first dynamic panel data model is with time-varying level only

yit = µt + ci + bi xi ,t−1 + εit ,

where ci ∼ NID(c, σ2c ), ci ∼ NID(b, σ2b) and µt is modeled as a
random walk process.

The second dynamic panel data model is with two time-varying
effects

yit = µt + ci + (βt + bi ) xi ,t−1 + εit ,

where both µt and βt are random walk processes.

Notice, we include lagged unemployment as output gap measure.
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Equation (19) in Hazell et al (2022)

The empirical Phillips Curve model of Hazell et al (2022) is

πit = µt + ci + b · Ui ,t−4 + d · pi ,t−4 + εit ,

for US states i = 1, . . . ,N and quarterly time index t = 1, . . . ,T ,

• πit is a non-tradeable inflation in US State i and quarter t;

• Uit is the unemployment rate (SA, from BLS / Local Area
Unempl Stat);

• pit is a relative price variable.

We allow to have a time-varying slope for unemployment:

πit = µt + ci + (b + βt) · Ui ,t−4 + d · pi ,t−4 + εit ,

This model fits our general framework perfectly.
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Equation (19) in Hazell et al (2022)

Given the general model,

πit = µt + ci + (b + βt) · Ui ,t−4 + d · pi ,t−4 + εit ,

and in spirit of Table 1 of Hazell et al (2022), we consider four
special cases:

(i) πit = c + b · Ui ,t−4 + d · pi ,t−4 + εit

(ii) πit = ci + b · Ui ,t−4 + d · pi ,t−4 + εit

(iii) πit = µt + ci + b · Ui ,t−4 + d · pi ,t−4 + εit

(iv) πit = µt + ci + (b + βt) · Ui ,t−4 + d · pi ,t−4 + εit
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Estimates of Slope of Phillips Curve

No Fixed No Time Lagged TV Lagged
Effects Effects Unempl Unempl

State effect X X X
Stoch trend X X
Stoch slope X

(i) (ii) (iii) (iv)

1978 - coef 0.1030 -0.0005 -0.1551 -0.1389
s.e. 0.0159 0.0177 0.0237 0.2266
-llik 9705.6 9613.0 8158.1 8140.3

1982 - coef 0.0766 0.0192 -0.1094 -0.0997
s.e. 0.0130 0.0144 0.0234 0.1346
-llik 8240.6 8154.6 7504.4 7501.4
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Estimates of Slope of Phillips Curve

1980 1990 2000 2010 2020
-0.4

-0.2

0.0

0.2

1980 1990 2000 2010 2020
-0.4

-0.2

0.0

0.2

1980 1990 2000 2010 2020
-0.4

-0.2

0.0

0.2

1980 1990 2000 2010 2020
-0.4

-0.2

0.0

0.2

30 / 54



Equation (19) with Instrumental Variable
In the original Eq 19 of Hazell et al (2022),

πit = µt + ci + b · Ui,t−4 + d · pi,t−4 + εit ,

• lagged unemployment rate Ui,t−4 is treated as endogenous;

• lagged relative price pi,t−4 is treated as exogenous.

As Hazell et al, we instrument lagged unemployment as in Bartik (1991).

The instrument is a shift-share variable and is constructed using
employment shares of individual industries at each US State i : Bartikit .

In our implementation of 2SLS, we apply Eq 19 (with/without βt),
replace πit by Ui,t−4 on LFS and Ui,t−4 by Bartiki,t−4 on RHS.

After estimation, the in-sample fit for Ui,t−4 is denoted by Ûi,t−4 and
replaces Ui,t−4 in the original Eq 19 for πit .

Due to data availability and construction of IV, we can only estimate the

model with IV for the sample 1982 – 2017.
31 / 54



Slope Estimates of Phillips Curve 1982 -

Kalman Filter IV Kalman Filter
Lagged TV Lagged Tradable TV Tradable
Unempl Unempl Demand IV Demand IV

State X X X X
TV Level X X X X
TV Slope X X

(iii) (iv) (v) (vi)

coef -0.1094 -0.0997 -0.3008 -0.3819
s.e. 0.0234 0.1346 0.0600 0.2191
-llik 7504.4 7501.4 7502.0 7499.3
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IV Slope Estimates Phillips Curve 1982 -
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Concluding Remarks on Inflation

We have replicated the rigorous analysis of Hazell et al (2022) in
estimating the highly anticipated Slope of the Phillips Curve.

The stochastic trend (replacing the time fixed effects) and the
time-varying slope coefficient lead to a significantly better fit.

Also the residual diagnostics look much better for model with
stochastic trends. Hence, there is less need for ad-hoc corrections
of standard errors of estimates and related test statistics.

This panel model can be explored further. For example, we can
assess its workings for individual US States.
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New York State Inflation Fit, 1978-2017
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Aim: extracting common trends from
Ethane measures

We have Ethane measures from N = 26 stations around the globe.

We divide the stations according to their location in the Northern
or Southern hemisphere: Nnorth = 21 and Nsouth = 5

The stations are located at different altitudes: we have demeaned
the individual time series.

Let’s have a look at the time series in our N × T data matrix.
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Ethane measures: data
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Ethane measures: data
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Ethane measures: cross-sectional average

time series of averages 
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Ethane measures: cross-sectional average

time series of averages: Northern Hemisphere 
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Univariate Decompositions

We first start with considering each time series separately :
univariate analysis
We consider the unobserved component time series model for a
particular time series i :

yt = µt + ψt + εt , t = 1, . . . ,T ,

for i = 1, . . . ,N, that is yt is a time series of Ethane measures
from a particular station.
The components represent a long-term trend (µt) and
summer/winter seasonal effect (ψt) and short-term noise (εt).
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Univariate Decomposition: trend
We consider the unobserved component time series model for a
particular time series i , the level plus seasonal model:

yt = µt + ψt + εt , εt ∼ NID(0, σ2ε),

for t = 1, . . . ,T .

A possible dynamic specification for µt is a basic local level model:

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η),

where the value of σ2η determines the variation in the trend.

An appropriate dynamic specification for the seasonal effect ψt ,
typically based on multiple stochastic seasonal sine/cosine waves.

The parameters and components are estimated by placing the
model in state space form and applying Kalman filter methods: see
Harvey 1989, Durbin and Koopman 2012.
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Parameter estimates
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Smooth estimates of the level
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Smooth estimates of the level: pooled pars
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Panel with stochastic level and seasonal

In climate studies, interest focuses on the common level or the
“global” Ethane measure.

We consider a country panel model with stochastic trend (and
seasonal), that is

yit = λµi µt + λψi ψt + εit , t = 1, . . . ,T ,

The weights or loadings λµi and λψi are estimated by maximum
likelihood using state space methods.

The loadings can also be set a-priori from information generated
from the univariate analysis.
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Pooled level: a global Ethane measure
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Pooled level: a global Ethane measure
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Multiple stochastic levels and seasonals

Next we consider Northern H and Southern H jointly,

and consider the country panel model with multiple (two)
stochastic trends (and seasonals), that is

yt = Λµ (µNt , µ
S
t )′ + Λψ (ψN

t , ψ
S
t )′ + εt , t = 1, . . . ,T ,

The weight or loading matrices have dimension N × 2 and select
the appropriate trend and seasonal for the Northern or Southern
hemispheres.
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Bivariate Level specification

The bivariate level specification is

(µNt+1, µ
S
t+1)′ = (µNt , µ

S
t )′ + (ηNt , η

S
t )′, (ηNt , η

S
t )′ ∼ N(0,Ση),

where Ση is a 2× 2 covariance matrix and is estimated by MLE,
together with other parameters.

The estimate of the correlation between ηNt and ηSt is ρ̂η = 0.72.

The global Ethane measures for the Northern and Southern H have
much in common but are not exactly the same.
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Two pooled levels: North / South H
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Discussion

Our aim is to construct a global index for Ethane.

We plan to extend the analysis further.

For example, the variance matrix εt can be spatially specified as
σ2ε V where the N × N matrix V reflects correlations that are
determined by the distances between the stations.

Also, other covariates such as altitude and temperature can be
considered.

We further need to investigate whether the country panel model is
useful for forecasting.
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Concluding Remarks

Our aim has been to argue that alternative dynamic panel data
model can be feasible and effective.

All inference is likelihood-based, exact, and has no approximations.

We plan to extend the analysis further based on the presented
framework.
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