
Discussion of ”Enhanced Bayesian Neural Networks for

Macroeconomics and Finance”

by Hauzenberger, N., Huber, F., Klieber, K., and Marcellino, M.

Carlos Montes-Galdón

European Central Bank, DG-Economics, Forecasting and Policy Modelling

Prepared for the 12th ECB Conference on Forecasting Techniques

Disclaimer : This discussion reflects my own views and not those of the ECB or the Eurosystem

I would like to thank Chat-GPT 4 for providing excellent research assistance

This paper

• Build an algorithm to estimate models with generic and unknown nonlinearities and time variation for

(possibly large sets of) macro and financial variables, with SV - Bayesian Neural Network

• Apply the algorithm to several time series models - the algorithm seems to perform very well in

out-of-sample forecasting

• Overall, I like this paper a lot - very well developed algorithm , good applications, and very

interesting results...

• ... but I have some doubts about the performance compared to standard Bayesian Neural Network

algorithms and the differences

• The authors claim that their algorithm outperforms quite dramatically standard BNN estimated by

backpropagation - but I think the estimations are not comparable

1

This paper

• Build an algorithm to estimate models with generic and unknown nonlinearities and time variation for

(possibly large sets of) macro and financial variables, with SV - Bayesian Neural Network

• Apply the algorithm to several time series models - the algorithm seems to perform very well in

out-of-sample forecasting

• Overall, I like this paper a lot - very well developed algorithm , good applications, and very

interesting results...

• ... but I have some doubts about the performance compared to standard Bayesian Neural Network

algorithms and the differences

• The authors claim that their algorithm outperforms quite dramatically standard BNN estimated by

backpropagation - but I think the estimations are not comparable

1

This paper

• Build an algorithm to estimate models with generic and unknown nonlinearities and time variation for

(possibly large sets of) macro and financial variables, with SV - Bayesian Neural Network

• Apply the algorithm to several time series models - the algorithm seems to perform very well in

out-of-sample forecasting

• Overall, I like this paper a lot - very well developed algorithm , good applications, and very

interesting results...

• ... but I have some doubts about the performance compared to standard Bayesian Neural Network

algorithms and the differences

• The authors claim that their algorithm outperforms quite dramatically standard BNN estimated by

backpropagation - but I think the estimations are not comparable

1

A simple neural network

• Hidden layer

a1 = a(b1 + w11x1 + ...+ w13x3)

a2 = a(b2 + w21x1 + ...+ w23x3)

a3 = a(b3 + w31x1 + ...+ w33x3)

• Output layer

a1 = a(bo + wo1a1 + ...+ wo3a3)

• If there is no Hidden Layer and a(...) = linear ,

then we are back to a linear regression

• The goal is to estimate the weights (wij) and the

biases (bi)

• Minimize a loss function - usually MSE, for

example (y − a1(x))
2

2

Bayesian Neural Networks

”Standard” BNN

• Select a prior over θ = w , b

• Pick a variational approximation to the posterior

distribution, qλ(θ) where λ are the parameters

that define the variational approximation

• minimize the Kullback-Leibler divergence between

qλ(θ) and p(θ|y), which is not tractable - that is,

find the parameters of the variational

approximation

This paper

• Select a prior over θ = w , b

• As in standard Bayesian analysis, find the

posterior distribution, p(θ|y) without relying on

variational approximations

• As the posterior distribution is not tractable, they

develop a MCMC sampler to find the posterior

distribution as they can find tractable conditional

posterior distributions

3

A simulation example

• Let me simulate highly non-linear data and use a standard BNN to learn the non-linearities,

yt = f (xt) + σ(xt)ϵt

• As prior for the weights and biases use N (0, 1) and as variational posterior N (λi,1, λi,2).

• The neural network (nn) has 2 outputs, which are going to be the mean of the model and the standard

deviation, so that I minimize the KL divergence between the variational posterior and the (exact)

posterior,

λ∗ = argmin{KL[qλ(θ)||p(θ)]− Eθ∼qλ [log(p(y |θ)]}

in my case p(y |θ) ≡ N (nn1, nn2)

• In order to simulate the posterior densities, I use both epistemic uncertainty (coming from uncertainty

in the posterior distribution of the weights) and aleatoric uncertainty, coming from the residuals, ϵ

4

Architecture for the neural network

tanh tanh

linear

x1

x2

x3

nn1 = µ(x1, x2, x3)

nn2 = σ(x1, x2, x3)

5

Estimated results

Figure 1: x1 Figure 2: x2 Figure 3: x3

6

Comparison with BNN in the paper

• In the paper, when comparing LPL, a standard

BNN performs much worse than the proposed

algorithm - ”the dismal performance of BNN-BP

is driven by too narrow predictive bounds”...

• ... but the authors use a MSE loss function to

estimate the BNN-BP - no aleatoric uncertainty,

which they have in their algorithm, together

with SV.

• In fact, when looking at table B.3 which

compares the forecast performance according to

the RMSE, the performance is not so different

7

Comparison with BNN in the paper

• In the paper, when comparing LPL, a standard

BNN performs much worse than the proposed

algorithm - ”the dismal performance of BNN-BP

is driven by too narrow predictive bounds”...

• ... but the authors use a MSE loss function to

estimate the BNN-BP - no aleatoric uncertainty,

which they have in their algorithm, together

with SV.

• In fact, when looking at table B.3 which

compares the forecast performance according to

the RMSE, the performance is not so different

7

Estimated results with MSE loss

Figure 4: x1 Figure 5: x2 Figure 6: x3

8

Alternative architecture similar to the paper

tanh

...

softplus

...

sigmoid

...

linear

x1

x2

x3

µ

σ

• Use one layer, with independent activation

functions, that then are combined to produce the

two outputs

• Use prior shrinkage - Laplace distribution

9

Estimated BNN with alternative architecture

Figure 7: x1 Figure 8: x2 Figure 9: x3

10

Conclusion

• Overall, a very good paper, but I am still not convinced that the algorithm is better than standard

BNN, which are ”easily” implementable (with a steep learning curve), with appropriate shrinkage priors

• The paper will also improve with a more through discussion of what are the variables driving the

nonlinearities, in case they are present

• In the simulated data section, I would prefer to see how the algorithm learns the nonlinear impact of

each regressor on the outcome variable - I struggle to understand why the linear model with SV

performs as well as the BNN with the same activation function for each neuron

11

THANK YOU!

12

Model used to simulate data

I use the following model to simulate artificial data,

Yt = f1(x1t) + f2(x2t) + f3(x3t) + σt(xt)ϵt
f1(x1t) = (b1 + tanh(x1t))x1t

f2(x2t) = x22t
f3(x3t) = b31x3t + b32x

2
3t + b33x

3
3t

σt(xt) = s0 + s11x
2
1t + s12x

2
2t + s13x

2
3t

13

