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This paper

• Build an algorithm to estimate models with generic and unknown nonlinearities and time variation for

(possibly large sets of) macro and financial variables, with SV - Bayesian Neural Network

• Apply the algorithm to several time series models - the algorithm seems to perform very well in

out-of-sample forecasting

• Overall, I like this paper a lot - very well developed algorithm , good applications, and very

interesting results...

• ... but I have some doubts about the performance compared to standard Bayesian Neural Network

algorithms and the differences

• The authors claim that their algorithm outperforms quite dramatically standard BNN estimated by

backpropagation - but I think the estimations are not comparable

1



This paper

• Build an algorithm to estimate models with generic and unknown nonlinearities and time variation for

(possibly large sets of) macro and financial variables, with SV - Bayesian Neural Network

• Apply the algorithm to several time series models - the algorithm seems to perform very well in

out-of-sample forecasting

• Overall, I like this paper a lot - very well developed algorithm , good applications, and very

interesting results...

• ... but I have some doubts about the performance compared to standard Bayesian Neural Network

algorithms and the differences

• The authors claim that their algorithm outperforms quite dramatically standard BNN estimated by

backpropagation - but I think the estimations are not comparable

1



This paper

• Build an algorithm to estimate models with generic and unknown nonlinearities and time variation for

(possibly large sets of) macro and financial variables, with SV - Bayesian Neural Network

• Apply the algorithm to several time series models - the algorithm seems to perform very well in

out-of-sample forecasting

• Overall, I like this paper a lot - very well developed algorithm , good applications, and very

interesting results...

• ... but I have some doubts about the performance compared to standard Bayesian Neural Network

algorithms and the differences

• The authors claim that their algorithm outperforms quite dramatically standard BNN estimated by

backpropagation - but I think the estimations are not comparable

1



A simple neural network

• Hidden layer

a1 = a(b1 + w11x1 + ...+ w13x3)

a2 = a(b2 + w21x1 + ...+ w23x3)

a3 = a(b3 + w31x1 + ...+ w33x3)

• Output layer

a1 = a(bo + wo1a1 + ...+ wo3a3)

• If there is no Hidden Layer and a(...) = linear ,

then we are back to a linear regression

• The goal is to estimate the weights (wij) and the

biases (bi )

• Minimize a loss function - usually MSE, for

example (y − a1(x))
2
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Bayesian Neural Networks

”Standard” BNN

• Select a prior over θ = w , b

• Pick a variational approximation to the posterior

distribution, qλ(θ) where λ are the parameters

that define the variational approximation

• minimize the Kullback-Leibler divergence between

qλ(θ) and p(θ|y), which is not tractable - that is,

find the parameters of the variational

approximation

This paper

• Select a prior over θ = w , b

• As in standard Bayesian analysis, find the

posterior distribution, p(θ|y) without relying on

variational approximations

• As the posterior distribution is not tractable, they

develop a MCMC sampler to find the posterior

distribution as they can find tractable conditional

posterior distributions
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A simulation example

• Let me simulate highly non-linear data and use a standard BNN to learn the non-linearities,

yt = f (xt) + σ(xt)ϵt

• As prior for the weights and biases use N (0, 1) and as variational posterior N (λi,1, λi,2).

• The neural network (nn) has 2 outputs, which are going to be the mean of the model and the standard

deviation, so that I minimize the KL divergence between the variational posterior and the (exact)

posterior,

λ∗ = argmin{KL[qλ(θ)||p(θ)]− Eθ∼qλ [log(p(y |θ)]}

in my case p(y |θ) ≡ N (nn1, nn2)

• In order to simulate the posterior densities, I use both epistemic uncertainty (coming from uncertainty

in the posterior distribution of the weights) and aleatoric uncertainty, coming from the residuals, ϵ
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Architecture for the neural network

tanh tanh

linear

x1

x2

x3

nn1 = µ(x1, x2, x3)

nn2 = σ(x1, x2, x3)
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Estimated results

Figure 1: x1 Figure 2: x2 Figure 3: x3
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Comparison with BNN in the paper

• In the paper, when comparing LPL, a standard

BNN performs much worse than the proposed

algorithm - ”the dismal performance of BNN-BP

is driven by too narrow predictive bounds”...

• ... but the authors use a MSE loss function to

estimate the BNN-BP - no aleatoric uncertainty,

which they have in their algorithm, together

with SV.

• In fact, when looking at table B.3 which

compares the forecast performance according to

the RMSE, the performance is not so different

7



Comparison with BNN in the paper

• In the paper, when comparing LPL, a standard

BNN performs much worse than the proposed

algorithm - ”the dismal performance of BNN-BP

is driven by too narrow predictive bounds”...

• ... but the authors use a MSE loss function to

estimate the BNN-BP - no aleatoric uncertainty,

which they have in their algorithm, together

with SV.

• In fact, when looking at table B.3 which

compares the forecast performance according to

the RMSE, the performance is not so different

7



Estimated results with MSE loss

Figure 4: x1 Figure 5: x2 Figure 6: x3
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Alternative architecture similar to the paper

tanh

...

softplus

...

sigmoid

...

linear

x1

x2

x3

µ

σ

• Use one layer, with independent activation

functions, that then are combined to produce the

two outputs

• Use prior shrinkage - Laplace distribution
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Estimated BNN with alternative architecture

Figure 7: x1 Figure 8: x2 Figure 9: x3
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Conclusion

• Overall, a very good paper, but I am still not convinced that the algorithm is better than standard

BNN, which are ”easily” implementable (with a steep learning curve), with appropriate shrinkage priors

• The paper will also improve with a more through discussion of what are the variables driving the

nonlinearities, in case they are present

• In the simulated data section, I would prefer to see how the algorithm learns the nonlinear impact of

each regressor on the outcome variable - I struggle to understand why the linear model with SV

performs as well as the BNN with the same activation function for each neuron

11



THANK YOU!
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Model used to simulate data

I use the following model to simulate artificial data,

Yt = f1(x1t) + f2(x2t) + f3(x3t) + σt(xt)ϵt
f1(x1t) = (b1 + tanh(x1t))x1t

f2(x2t) = x22t
f3(x3t) = b31x3t + b32x

2
3t + b33x

3
3t

σt(xt) = s0 + s11x
2
1t + s12x

2
2t + s13x

2
3t
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