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Motivation

Conditional forecasts are projections of a set of variables of
interest on the future paths of some other variables.
They are used routinely by empirical macroeconomists in a
number of applied settings.
Since the seminal work of Waggoner and Zha (1999) ReStat
paper, conditional forecasts are often paired with VARs.
They are used to project the future path of a set of
macroeconomic variables after conditioning on a particular
policy instrument or an important macroeconomic indicator,
such as the Fed funds rate or real GDP.
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Motivation (cont.)

There are two types of conditional forecasts:
1 Traditional (reduced-form) case

Conditions are generated by all the structural shocks of the
model, e.g conditional on observables.

2 Structural scenarios analysis
Conditions are generated from a sequence of specific shocks
from a (point or set) identified VAR, e.g. conditional on
shocks.

A recent JME paper by Antolin-Diaz, Petrella, and
Rubio-Ramirez (2021) introduce a unified framework for
conditional forecasts and structural analysis within VAR
models.
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Motivation (cont.)

In the traditional case, there are two types of conditional
forecasts that one can make: hard and soft conditioned
forecasts

Hard conditions: one wants to fix the future paths of the
conditioned variables at specific values.
Soft conditions: one allows the future values of the
conditioned variables to lie within a certain range.

The hard conditions are the most commonly employed in the
empirical literature. (see again Giannone, Lenza, Pill, and
Reichlin (2012); Giannone, Lenza, Momferatou, and Onorante
(2014) as well as Jarocinski and Smets (2008) and Lenza, Pill,
and Reichlin (2010)).
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Motivation (cont.)

The soft-constrained conditional forecasts are more scarce in
the literature

This is due to the computational challenges associated with
generating the conditional forecasts.
Waggoner and Zha (1999) rely on an acceptance-rejection
algorithm that requires a large number of simulated draws to
satisfy the constraints.
Andersson, Palmqvist and Waggoner (2010) is the only other
known study in the literature.
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Motivation (cont.)

Often the case that one does not know the actual future
realization path of the constrained endogenous variables.
In these situations, it is much simpler to impose that the
future values of the variables conditioned on will be between a
range or an interval instead of an exact path.
Soft constraints allow the forecaster to acknowledge the
uncertainty surrounding the future realization path of the
constrained endogenous variables.
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Main contribution

We introduce a novel precision-based approach to conditional
forecasting that generalizes and extends the existing methods
available in the literature in several ways.
Similar to Antolin-Diaz, Petrella, and Rubio-Ramirez (2021),
our precision-based approach is closed-form and can be used
for both conditional forecast and structural scenario analysis.
Our precision-based approach is significantly more efficient
and better suited to handling large dimensional VARs as well
as situations in which we have a large number of (hard or
soft) conditioning variables and long forecast horizons.
Our proposed framework is similar to Chan, Poon and Zhu
(2023) (Forthcoming at Journal of Econometrics) in which
they apply the precision-based approach to high-dimensional
state-space models with missing data.
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Main contribution (cont.)

We develop a fast and efficient method for simulating the
conditional forecasts from a (or multiple) soft constraint(s).

To do this, we combine the precision sampler of Chan and
Jeliazkov (2009) with the exponential minmax tilting method
of Botev (2017).
The precision sampler exploits fast band matrix algorithms.

Botev (2017) provides an efficient method to generate
random draws from a high-dimensional Gaussian distribution
under linear restrictions.

The algorithm is an accept-reject sampler, but it is constructed
in a way that the proposal distribution satisfies all the
constraints via exponential tilting.
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Outline of the Presentation

We first proposed a general framework for conditional
forecasts.
We derive both hard and soft constrained conditional forecast
distributions.
In a simulation study, we compare our novel precision-based
conditional forecasting sampler to four existing approaches in
the literature:

Waggoner and Zha (1999)
Banbura et al. (2015) - Filtering/Smoothing methods
Antolin-Diaz, Petrella, and Rubio-Ramirez (2021)
Andersson, Palmqvist and Waggoner (2010)

Lastly, we apply our novel precision-based conditional forecast
sampler to a Large BVAR with multiple hard and soft
constraints in the empirical application.
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Unconditional Forecast from a Structural VAR

Let us first define n × 1 vector of variables
yt = (y1,t , . . . , yn,t)′ structural VAR with p lags
A0yt = a + A1yt−1 + . . . + Apyt−p + ϵt , ϵt ∼ N(0n, In),

where a is an n × 1 vector of intercepts, A1, . . . , Ap are the
n × n VAR coefficient matrices, A0 is a full-rank
contemporaneous impact matrix, 0n is an n × 1 vector of
zeros and In is the n-dimensional identity matrix.
Given the whole history of observations yT = (y′

1−p, . . . , y′
T )′,

the unconditional forecast of the observables for the next h
periods, yT+1,T+h = (y′

T+1, . . . , y′
T+h)′, can be written as

HyT+1,T+h = c + ϵT+1,T+h, ϵT+1,T+h ∼ N(0n, In),
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Unconditional Forecast from a Structural VAR (cont.)

Thus, we can define both c and H as

c =



a +
∑p

j=1
Aj yT+1−j

a +
∑p

j=2
Aj yT+1−j

...
a + ApyT

a
...
a


, H =



A0 0n×n · · · · · · · · · · · · · · · 0n×n
−A1 A0 0n×n · · · · · · · · · · · · 0n×n
−A2 −A1 A0 0n×n · · · 0n×n

...
. . .

. . .
. . .

. . .
. . .

...

−Ap · · · −A1 A0 0n×n

...

0n×n
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
0n×n · · · 0n×n −Ap · · · −A2 −A1 A0


.

where 0n×n is an n × n zero matrix.
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Unconditional Forecast from a Structural VAR (cont.)

Since A0 is of full-rank and the determinant of H is |A0|h ̸= 0,
the inverse H−1 exists. Therefore, we can show that

yT+1,T+h ∼ N(H−1c, (H′H)−1), (1)

Since H is an nh × nh band matrix with band width np, the
precision-based sampling approach of Chan and Jeliazkov
(2009) can be used to efficiently draw from the above
unconditional distribution, even when both n and h are large.
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Conditional Forecasts

We can write the conditional forecasts as a set of linear
restrictions on the path of future observables yT+1,T+h

RyT+1,T+h ∼ N(r, Ω), (2)

where R is a r × nh constant matrix with full row rank (so
that there are no redundant restrictions), r and Ω are r × 1
and r × r matrices representing the mean and covariance of
the restrictions.
The above setup is very general and can accommodate both
the hard, e.g setting Ω = 0r×r , and soft constraints.
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Conditional Forecasts (cont.)

We can combine both (1) and (2)

RyT+1,T+h = RH−1c+RH−1ϵT+1,T+h, ϵT+1,T+h ∼ N(r, Ω),
(3)

Next, we can derive the set of restrictions on the future
shocks implied by both (2) and (3).

ϵT+1,T+h|R, r, Ω ∼ N(µϵ, Inh + Ψϵ), (4)

where µϵ and Ψϵ are, respectively, the deviations of the mean
vector and covariance matrix of the restricted future shocks
from their unconditional counterparts in (1).
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Conditional Forecasts (cont.)

Combining both (3) and (4) implies the following restriction
on µϵ and Ψϵ

RH−1(c + µϵ) = r
RH−1(Inh + Ψϵ)H−1′R′ = Ω.

(5)

When r < nh, the above (5) is underdetermined and has
multiple solution.
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Conditional Forecasts (cont.)

We follow Antolin-Diaz, Petrella, and Rubio-Ramirez (2021)
and choose a solution that can be expressed in terms of the
Moore-Penrose inverse of RH−1, which we denote as
(RH−1)+

µϵ = (RH−1)+(r − RH−1c)
Ψϵ = (RH−1)+(Ω − R(H′H)−1R′)(RH−1)+′

.
(6)

This means the solution represents the smallest deviations of
the mean vector and covariance matrix of the conditional
future shocks from the unconditional ones.
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Conditional Forecasts (cont.)

Using the previous result, we can map the constraints on the
future shocks implied by (2) and (3) to the corresponding
constraints on the forecasts.
Let us denote the conditional forecast distribution as

yT+1,T+h|R, r, Ω ∼ N(µy, Σy),

Then, (1) and (6) imply that
µy = H−1 [

c + (RH−1)+(r − RH−1c)
]
,

Σy = H−1
[
Inh + (RH−1)+(Ω − R(H′H)−1R′)(RH−1)+′

]
H−1′

.

This result is extremely general and, in fact, encompasses a
number of useful and popular applications of conditional
forecasting.
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Conditional Forecasts (cont.)

We can extend our general conditional forecasting framework
to accommodate soft conditioning, where one allows the
future values of the conditioned variables to lie within a
certain range.

c < SyT+1,T+h < c̄, (7)

where S is a s × nh pre-specified full-rank constant matrix, c
and c̄ are s × 1 constant vectors (with elements in
R ∪ {±∞}) and the inequalities hold component-wise.
S can be a selection matrix and also allows for inequality
restrictions on any linear combinations of the variables.
Thus, from equations (1) and (7) implies yT+1,T+h has a
truncated multivariate normal distribution

yT+1,T+h|c < SyT+1,T+h < c̄ ∼ N(H−1c, (H′H)−1)1(c < SyT+1,T+h < c̄), (8)

where 1(·) is the indicator function.

Chan et al. (2023) Conditional Forecasts in Large VARs



Special Case: Hard Constraint on Future Observables

Hard constraint example: A policymaker might be interested
in the the future path of GDP conditioned on the scenario
that the future policy rate follows a fixed path across the
forecast horizon.
This type of restriction can be written as

RoyT+1,T+h = ro,

where Ro is a ro × nh pre-specified full-rank selection
matrix—a matrix in which each row has exactly one element
that is 1 and all other elements are 0—and ro is a ro × 1
vector of constants.
This setting can be nested within our general framework by
setting R = Ro, r = ro and Ω = 0ro×ro .
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Special Case: Hard Constraint on Future Observables
(cont.)

Next, we can first partition the nh × 1 vector yT+1,T+h into
yo

T+1,T+h is a ro × 1 vector of the hard-constrained endogenous
variables—the set of variables that are selected by Ro .
yu

T+1,T+h is a (nh − ro) × 1 vector of free or unconstrained
variables.

Let R−
o denote the associated (nn − ro) × nh selection matrix

that selects yu
T+1,T+h. Then, we can write yT+1,T+h as

follows:

yT+1,T+h = Muyu
T+1,T+h + Moyo

T+1,T+h, (9)

where Mu = (R−
o )′ and Mo = R′

o. Note that both Mu and
Mo have full column rank and are sparse with only,
respectively, nh − ro and ro non-zero elements.
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Special Case: Hard Constraint on Future Observables
(cont.)

Next, we can derive the joint conditional distribution of
yu

T+1,T+h given yo
T+1,T+h and the model parameters A0 and

A = (a, A1, . . . , Ap)′, by substituting (9) into (1)
H(Muyu

T+1,T+h + Moyo
T+1,T+h) = c + ϵT+1,T+h, ϵT+1,T+h ∼ N(0n, In),

Hence, the conditional density of yu
T+1,T+h given yo

T+1,T+h
and the model parameters can be expressed as

p(yu
T+1,T+h|yo

T+1,T+h, A0, A)

∝ exp
{

−
1
2

(H(Muyu
T+1,T+h + Moyo

T+1,T+h) − c)′(H(Muyu
T+1,T+h + Moyo

T+1,T+h) − c)
}

∝ exp
{

−
1
2

(
yu′

T+1,T+hM
′
uH

′
HMuyu

T+1,T+h − 2yu′
T+1,T+hM

′
uH

′
(c − HMoyo

T+1,T+h)
)}

∝ exp
{

−
1
2

(yu
T+1,T+h − µu)′Ku(yu

T+1,T+h − µu)
}

,
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Special Case: Hard Constraint on Future Observables
(cont.)

Thus,

Ku = M′
uH′HMu , µu = K−1

u M′
uH′H(H−1c − Moyo

T+1,T+h).

That is,

(yu
T+1,T+h|yo

T+1,T+h, A0, A) ∼ N(µu, K−1
u ).

Since H and Mu are band matrices, so is the precision matrix
Ku. Therefore, we can again use the precision sampler of
Chan and Jeliazkov (2009) to draw yu

T+1,T+h efficiently.
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Special Case: Soft Constraint on Future Observables

Returning to the previous example, instead of conditioning on
a fixed path of the future policy rate, we can restrict the
future path of the policy rate to be, say, between 1% and 2%
in the next 8 quarters and between 1.5% and 2.5% afterward.
Recall from (8)
yT+1,T+h|c < SyT+1,T+h < c̄ ∼ N(H−1c, (H′H)−1)1(c < SyT+1,T+h < c̄),

How do we draw from this truncated multivariate normal
distribution?
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Special Case: Soft Constraint on Future Observables
(cont.)

To draw from this truncated multivariate normal distribution,
we employed the minmax tilting method of Botev (2017),
which is a generic algorithm to efficiently sample from a
potentially high-dimensional Gaussian distribution under linear
inequality restrictions.
We combined this minmax tilting method with the precision
sampler of Chan and Jeliazkov (2009).
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Special Case: Soft Constraint on Future Observables
(cont.)

How do we simulate a draw of the conditional forecasts
yT+1,T+h subject to a soft constraint:

1 We first sample yo
T+1,T+h marginally from its truncated

so-variate Gaussian distribution using the algorithm of Botev
(2017).

2 Given a draw for yo
T+1,T+h, we can then sample yu

T+1,T+h
from its Gaussian conditional distribution using the precision
sampler of Chan and Jeliazkov (2009), which can be done very
quickly and the computational cost increases only linearly in
the dimension.

In typical applications where so is much smaller than nh, this
approach based on the marginal-conditional decomposition is
substantially more efficient, as it reduces the dimension of the
more computationally intensive step of sampling from the
truncated Gaussian from nh to so.
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Simulation study

We conduct two simulation studies.
Hard constraint

Precision-based method
Waggoner and Zha (1999) (WZ)
Banbura et al. (2015) - Filtering/Smoothing methods (DK)
Antolin-Diaz, Petrella, and Rubio-Ramirez (2021) (APR)

Soft constraint
Precision-based method
Waggoner and Zha (1999)
Andersson, Palmqvist and Waggoner (2010) (APW)
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Simulation study (cont.)

We consider a data-generating process (DGP) that follows an
n-variables VAR structure with p = 2 lags

yt = b + B1yt−1 + B2yt−2 + ϵt , ϵt ∼ N(0, Σ), (10)

We set T = 300, b = 0.01 × 1n, where 1n is an n × 1 column
of ones.
We generate the diagonal of elements of B1 from U(0, 0.5)
and off diagonal elements from U(−0.2, 0.2).
All the other elements of the higher VAR coefficients are
generated independently from N(0, 0.052/p2).
Finally, we generate the covariance matrix from
IW (n + 10, 0.07In + 0.031n1′

n).
We estimate the above model using standard uninformative
normal priors for the VAR coefficients and inverse-Wishart
prior for the covariance matrix.
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Simulation study - Hard constraint

We consider
A medium VAR with a short forecast horizon (n = 8, h = 5,
and ro = 3) with three constrained variables.
A large VAR with a long forecast horizon (n = 15, h = 20, and
ro = 3) with three constrained variables.

We estimate the VAR models using 25000 MCMC draws with
a burn-in period of 10000 draws.
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Simulation study - Hard constraint (cont.)
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Simulation study - Hard constraint (cont.)
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Simulation study - Soft constraint

We follow the same simulation structure as described above in
the hard constraint case, except that for the soft constraint,
we restrict the actual constrained (conditioned) variable
yo

t,T−h:T to be between some intervals.
More specifically, we set
ȳo

t,T−h:T − 0.1 ⪯ yo
t,T−h:T ⪯ ȳo

t,T−h:T + 0.1 and
ȳo

t,T−h:T = 1
h

∑T
t=T−h yo

t, is the average of the actual
simulated data across this forecast period.
In this simulation exercise, we consider an eight variables VAR
where n = 8 and a long forecast horizon h = 20 with only one
soft constraint no = 1.
We also estimate the eight variables VAR using 25000 MCMC
draws with a burn-in period of 10000 draws and implement
the same priors as in the hard constraint exercise.
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Simulation study - Soft constraint (cont.)
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Simulation study - Soft constraint (cont.)

To compute the conditional forecasts:
Our precision-based method took about 62 seconds.
Andersson, Palmqvist and Waggoner (2010) took about 70
seconds.
Waggoner and Zha (1999) accept-reject algorithm took
approximately 2,542 minutes.
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Simulation study - Soft constraint (cont.)
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Empirical Application

We apply our proposed method on a large BVAR model with
p = 4 lags for 31 quarterly variables.
The 31 quarterly variables are similar to the dataset chosen in
Crump et al. (2021) NY Fed Working paper.
We use a new asymmetric natural conjugate Minnesota-type
prior for large BVARs proposed by Chan (2021) QE.
We investigate the macroeconomic impact of a combination
of multiple soft and hard constraints at once.
To the best of our knowledge, this is the first study within the
literature that considers conditional forecasting in a large VAR
setting with multiple hard and soft constraints.
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Empirical Application (cont.)

Our sample period spans from 1976 to the end of 2019.
We investigate the effect of simultaneously imposing soft and
hard constraints on the trajectories of CPI inflation,
unemployment rate, and the 10-year Treasury rate over
2020Q1-2023Q1.
We implement our constraints to mimic the baseline and
adverse scenarios prepared by the Federal Reserve Board for
their 2020 stress test analysis.
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Summary of hard and soft constraints – Baseline scenario

CPI Inflation (Soft Constraint) Hard Constraints
Date Lower Bound Fed’s projection Upper Bound UNRATE GS10

2020Q1 1.69 2.20 2.71 3.60 1.80
2020Q2 1.55 2.10 2.65 3.60 1.90
2020Q3 1.58 2.00 2.42 3.60 1.90
2020Q4 1.47 1.90 2.33 3.70 2.00
2021Q1 1.57 2.10 2.63 3.70 2.00
2021Q2 1.40 2.10 3.00 3.70 2.10
2021Q3 1.40 2.10 3.00 3.80 2.10
2021Q4 1.25 2.10 4.00 3.80 2.20
2022Q1 1.25 2.30 4.00 3.90 2.20
2022Q2 1.10 2.20 5.00 3.90 2.40
2022Q3 1.10 2.20 5.00 3.90 2.50
2022Q4 1.00 2.20 6.00 3.90 2.60
2023Q1 1.00 2.20 6.00 3.90 2.70
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Summary of hard and soft constraints – Adverse scenario

CPI Inflation (Soft Constraint) Hard Constraints
Date Lower Bound Fed’s projection Upper Bound UNRATE GS10

2020Q1 1.19 1.70 2.21 4.50 0.70
2020Q2 0.55 1.10 1.65 6.10 0.90
2020Q3 0.58 1.00 1.42 7.40 1.00
2020Q4 0.67 1.10 1.53 8.40 1.10
2021Q1 0.77 1.30 1.83 9.20 1.20
2021Q2 0.90 1.40 2.00 9.70 1.30
2021Q3 0.90 1.50 2.00 10.00 1.40
2021Q4 0.95 1.70 3.00 9.90 1.50
2022Q1 0.95 1.80 3.00 9.70 1.60
2022Q2 0.97 1.80 4.00 9.50 1.80
2022Q3 0.97 1.80 4.00 9.20 1.90
2022Q4 1.00 1.80 5.00 8.80 2.10
2023Q1 1.00 1.70 5.00 8.50 2.20
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Empirical Application (cont.)
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Empirical Application (cont.)
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Conclusion

We introduced a novel precision-based approach that can be
used for conditional forecasting, scenario analysis and entropic
tilting and can handle both hard and soft constraints.
Our approach is computationally very efficient and particularly
well suited to handle large dimensional VARs as well as
situations in which we have a large number of conditioning
variables and a long forecast horizons.
We have shown in a simulation study that the proposed
approach generates exactly the same conditional forecasts and
credible sets as those from Waggoner and Zha (1999),
Banbura et al. (2015), Andersson, Palmqvist and Waggoner
(2010), and Antolin-Diaz, Petrella, and Rubio-Ramirez
(2021), but it is substantially less demanding computationally.
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Conclusion (cont.)

We conducted an empirical exercise where we estimated a
Bayesian VAR featuring 31 quarterly macroeconomic and
financial series.
We used our approach to investigate the effect of
simultaneously imposing a number of soft and hard constraints
on the trajectories of CPI inflation, the unemployment rate,
and the 10-year Treasury rate over the 2020–2022 period.
Next steps:

Extend our framework to non-linear models, e.g. BVAR with
Stochastic Volatility
Create a conditional forecasting toolbox for central bank
policymakers and researchers.
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Thank you

Thank you for listening.
Does anyone have any questions?
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