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Abstract

This article proposes a novel Bayesian multivariate quantile regression to fore-
cast the tail behavior of US macro and financial indicators, where the homoskedas-
ticity assumption is relaxed to allow for time-varying volatility. In particular, we
exploit the mixture representation of the multivariate asymmetric Laplace like-
lihood and the Cholesky-type decomposition of the scale matrix to introduce
stochastic volatility and GARCH processes, and we provide an efficient MCMC to
estimate them. The proposed models outperform the homoskedastic benchmark
mainly when predicting the distribution’s tails. We provide a model combination
using a quantile score-based weighting scheme, which leads to improved perfor-
mances, notably when no single model uniformly outperforms the other across
quantiles, time, or variables.
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1 Introduction

The current global economic and financial situation caused by the COVID-19 pandemic
and the Russian-Ukrainian war has renewed the interest of the economic forecasters’
and policy institutions in tail risk. In particular, there has been an increased interest
in understanding, modeling, and forecasting the macroeconomic downside tail risk and
in quantifying the uncertainty around these predictions. Typical time series methods
model the conditional mean of variables of interest, making them unsuited to capture
features, such as skewness, fat tails, and outliers, that typically characterize economic
and financial time series in turbulent periods. To answer these questions, quantile re-
gression models (QR, see Koenker and Bassett, 1978) have been exploited to study the
heterogeneous impact of covariates on different quantile levels of a variable of interest.
In particular, we contribute to this growing literature by extending recently introduced
multivariate QR framework to account for alternative time-varying volatility specifica-
tions, with the aim of enhancing the forecasting performance of economic and financial
indicators.

Within the macroeconomic literature, Adrian et al. (2019) use QR to estimate the
predictive distribution of real GDP growth as a function of financial and economic
conditions. In a follow-up, Adrian et al. (2022) define the growth-at-risk (GaR) as the
effect on the lower 5th percentile of conditional growth and estimate it by applying
a panel quantile regression model to a collection of eleven advanced economies. This
approach has been recently extended in Ferrara et al. (2022), who introduce mixed-data
sampling (MIDAS) to a Bayesian QR model to leverage on the informational content
of high-frequency financial conditions indicators. Adams et al. (2021) use a QR model
to characterize upside and downside risks around the Survey of Professional Forecasters
and provide a forward-looking assessment of uncertainty, which captures asymmetries in
risks and allows for the construction of informative tail risk measures. In macroeconomic
forecasting, univariate quantile autoregressive models have been used for making more
accurate predictions on the tails of the predictive distribution of key variables, such as
the GDP. Recently, Carriero et al. (2022) proposed to nowcast tail risk to GDP growth
by using Bayesian quantile regression and mixed-frequency regression with stochastic
volatility, whereas Pfarrhofer (2022) introduced time-varying parameters in quantile
regression to dynamically trace the quantiles of inflation.

More recent contributions have extended quantile regression to the multivariate set-
ting, originating the quantile Vector autoregressive (QVAR) models, among the others.
Chavleishvili and Manganelli (2021) introduce a structural QVAR model to capture
nonlinear relationships among macroeconomic variables and define a quantile impulse
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response function to perform stress tests.1 Aastveit et al. (2022) develop a forecasting
combination scheme from Bayesian quantile regressions that assigns weights to the in-
dividual predictive density forecasts based on the quantile scores. Iacopini et al. (2022)
introduce a novel mixed-frequency quantile VAR model (MF-QVAR), which combines
different frequencies in macroeconomic and financial variables to nowcast conditional
quantiles of the US GDP.

Quantile regression models rely on the asymmetric Laplace distribution (Kotz et al.,
2001) for defining the likelihood. Its representation as a location-scale mixture of Gaus-
sian distributions has allowed the design of efficient estimation algorithms (e.g., see
Kozumi and Kobayashi, 2011). But it also complicates the introduction of temporal
variation for the scale parameter. We fill-in this gap and propose two frameworks
for time-varying volatility in multivariate quantile regression models by means of a
parameter-driven and an observation-driven specification. Specifically, we define the
likelihood of a QVAR model via the multivariate asymmetric Laplace (MAL) distribu-
tion as in Iacopini et al. (2022) and Petrella and Raponi (2019), then we model the
conditional variance with either stochastic volatility (SV, Cogley and Sargent, 2005;
Primiceri, 2005) or generalized autoregressive conditional heteroskedasticity (GARCH,
Engle, 1982; Bollerslev, 1986).

Both extensions have nontrivial computational implications, as coupling SV or GARCH
effects with the mixture of Gaussian representation of the asymmetric Laplace distri-
bution results in the volatility affecting also the conditional mean of the conditionally
Gaussian distribution, but differently from the traditional SV- or GARCH-in-mean mod-
els. As a consequence, traditional methods for sampling the volatility path in SV- or
GARCH-in-mean models may be highly inefficient in this quantile framework. As a fur-
ther contribution, we address this issue by reformulating the models to make possible
the joint sampling of the whole trajectory of the time-varying volatility, independently
along the cross-sectional dimension.

As widely shown in the macroeconomic literature (D’Agostino et al., 2013; Clark and
Ravazzolo, 2015; Carriero et al., 2016), introducing alternative time-varying volatility
specifications improves the forecasting performance of conditional mean models, partic-
ularly in multivariate frameworks. However, most of the existing QR models impose
constant volatility for the observables, which is a rather restrictive assumption when
investigating economic and financial time series data, see Gerlach et al. (2011), Caporin
et al. (2018) and Caporin et al. (2021) for exceptions in univariate models. Moreover,
whereas a number of studies in the macroeconomic literature have compared quantile

1Ando and Bai (2020), Chen et al. (2021) and Clark et al. (2021) estimate quantile factor models
and Korobilis and Schröder (2022) extends to probabilistic quantile factor analysis.
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univariate models, no comparisons between different time-varying volatility models have
been proposed.

We propose to address these issues by first introducing the QVAR-SV and QVAR-
GARCH models. Then, motivated by the lack of a systematic comparison of the perfor-
mance of quantile regression methods for multivariate time series, this article compares
several univariate and multivariate quantile regression models with constant and alter-
native time-varying volatility specifications, adopting a Bayesian approach to inference
as in Clark and Ravazzolo (2015). The forecasting exercise considers different quantiles
for several key macroeconomic indicators and compares a plethora of models differing
for the dimensionality (univariate and multivariate) and the assumed volatility process
(constant and time-varying) settings. Finally, model combinations are considered based
on quantile score weighting schemes (Aastveit et al., 2022).

The QVAR-SV and QVAR-GARCH models are compared in forecasting US eco-
nomic and financial data, namely the GDP, unemployment rate, inflation, and the
NFCI. The results show that the proposed methods beat the constant volatility QVAR
benchmark for all the variables investigated, however no single specification is found to
uniformly dominate the other ones over time, nor across variables or quantiles. There-
fore, to provide the forecaster with a practical method that accommodates the wide
changes of the forecasting performance of individual models, we propose a model com-
bination with a quantile score-based weighting scheme. The combination weights show
significant variation over time, especially when the quantiles corresponding to the tails
of the distribution are concerned, and at each point in time most of the mass is assigned
to a single model.

The remainder of this article is organized as follows: Section 2 presents two novel
quantile regression models with time-varying volatility. Section 3 illustrates the Bayesian
approach to inference and the combination weights scheme. Then, Section 4 provides
forecasting evidence based on the quantile score for the US quarterly macroeconomic
data. Finally, Section 5 concludes the article.

2 Quantile regression models with alternative time-

varying volatility specification

Let yt ∈ Rn be an n-dimensional vector of response and xt ∈ Rk be a k-dimensional
vector of common covariates. Following the parametrization in Petrella and Raponi
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(2019), we define a multivariate quantile regression model as:

yt = Bxt + ϵt, ϵt ∼ MALn(0, Dθ1, DΘ2ΨΘ2D), (1)

where B is a (n × k) coefficient matrix, and MALn(µ, ξ,Σ) denotes the multivariate
asymmetric Laplace distribution (Kotz et al., 2001), with location µ ∈ Rn, skew param-
eter ξ ∈ Rn, and positive definite scale matrix Σ. The parametrization of eq. (1) is such
that D = diag(δ1, . . . , δn) with δj > 0, Ψ is a correlation matrix, and Θ2 = diag(θ2),
with:

θ1,j =
1− 2τj

τj(1− τj)
, θ2,j =

2

τj(1− τj)
, j = 1, . . . , n, (2)

where τj ∈ (0, 1) is the (marginal) quantile of the jth series. Building on the mixture
representation of the multivariate asymmetric Laplace distribution, one obtains:

yt = Xtβ +Dθ1wt +
√
wtDΘ2Ψ

1/2zt, zt ∼ Nn(0, In), wt ∼ Exp(1), (3)

where β = vec(B) ∈ Rnk is the vectorized coefficient matrix, θ1 = (θ1,1, . . . , θ1,n), and
Xt = (In ⊗ xt).

The multivariate QR in eq. (3) includes the quantile VAR (QVAR) model as a special
case for xt = yt−1. However, it assumes homoskedastic variance for the conditional
distribution of the response variables, yt, which is highly restrictive when modeling
economic and financial time series as they are typically characterized by highly persistent
and clustered volatility. The most popular solutions when modeling the conditional
mean are the stochastic volatility (Taylor, 1986) and the GARCH (Bollerslev, 1986)
specifications, which belong to the general classes of parameter-driven and observation-
driven models (Cox et al., 1981), respectively. Wit the aim of introducing similar
dynamics for the time-varying volatility in the conditional distribution of yt in eq. (3),
we first reparametrize the model as follows.

Let us denote by Σ = DΨD a positive definite matrix, where D = diag(Σ
1/2
11 , . . . ,Σ

1/2
nn ).

Then, we assume the Cholesky-type decomposition:

Σt = AHtA
′, (4)

where Ht is a diagonal matrix with positive elements on the diagonal and A is a lower
triangular matrix with 1 on the main diagonal. It follows that the (time-varying)
elements on the main diagonal of Σt, that is the series-specific conditional variance
of yt, correspond to elements of Ht. Recalling the definition of D, one has H

1/2
t =

diag(Σ
1/2
t,11, . . . ,Σ

1/2
t,nn) = Dt. Therefore, introducing time-varying volatility in the scale
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matrix, Σ, of eq. (3) results in a model that includes the square root of the volatility in
the conditional mean equation for yt:

yt = Xtβ +H
1/2
t θ1wt +

√
wtΘ2AH

1/2
t zt, zt ∼ Nn(0, In), wt ∼ Exp(1). (5)

This represents a generic multivariate quantile regression model with time-varying volatil-
ity. In the following sections, we investigate in detail the representation of the matrix
Ht when parameter- or observation-driven specification are considered.

2.1 Parameter-driven: Stochastic Volatility

We start by considering the stochastic volatility specification since it has become ap-
pealing in macroeconomic time series (Clark and Ravazzolo, 2015; Marcellino et al.,
2016). In fact, when dealing with conditional mean multivariate time series models, the
inclusion of stochastic volatility leads to strong improvements with respect to constant
volatility models. In this section, we propose to model the log-volatility as a stationary
autoregressive process of order 1. From eq. (4), this is obtained by specifying Ht as:

Ht = diag
(
eh1,t , . . . , ehn,t

)
,

hj,t = ϕjhj,t−1 + ϵhj,t, ϵhj,t ∼ N (0, σ2
h,j),

(6)

where |ϕj| < 1 and hj,1 ∼ N (0, σ2
h,j/(1 − ϕ2

j)). The model in eq. (3)-(4)-(6) is called
the quantile multivariate regression model with stochastic volatility (QR-SV). By in-
troducing lags of the response variable into the covariate set of eq. (3), one obtains the
QVAR-SV model.

By considering the specification of eq. (5) in eq. (3), it follows that introducing
stochastic volatility in Σ results in a model that includes the square root of the volatility
terms, ehi,t/2, in the conditional mean equation for yt:

yt = Xtβ + wtΘ1e
ht/2 +

√
wtΘ2A diag(eht/2)zt, (7)

where ht = (h1,t, . . . , hn,t)
′, eht/2 = (eh1,t/2, . . . , ehn,t/2)′, and Θ1 = diag(θ1). The vari-

ables zt and wt are as in eq. (3). Conditional on wt, this framework resembles a VAR
with stochastic volatility in mean (VAR-SVM) model. In particular, following the nota-
tion in Cross et al. (2021), we have g = n groups with size ni = 1, for each i = 1, . . . , n,
and q = 0 lags of the stochastic volatility included in the mean regression. The main
difference is that the VAR-SVM model includes the vector of log-volatilities, ht, whereas
we have the vector of square roots of volatilities, eht/2. The main consequence of this
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difference is that it prevents the use of the sampling scheme in Cross et al. (2021) for
estimating the log-volatility process.

To address this challenge and design a computationally efficient procedure for making
inference on the log-volatility processes hj = (hj,1, . . . , hj,T )

′, for each series j = 1, . . . , n,
we start by rewriting the conditional likelihood in eq. (7). Notice that in the remaining
of this section, we remove Xtβ for notation simplicity, as this term is not essential for
delivering the final result. By rearranging terms in eq. (7), one obtains:

yt = Bte
ht/2 + Atz̄t, z̄t ∼ Nn(0, Ht), (8)

where Bt = wtΘ1 ∈ Rn×n and At =
√
wtΘ2A ∈ Rn×n are transformation of Θ1 and Θ2.

We can notice that At is a lower triangular matrix, where the main diagonal elements
are different from one. Introducing the inverse of At allows us to rewrite eq. (8) as

A−1
t yt = Ãte

ht/2 + z̄t, (9)

where Ãt = A−1
t Bt. Therefore one obtains

ỹj
t = Ãt,:je

hj,t/2 + z̄t, z̄t ∼ Nn(0, Ht), (10)

where Ãt,:j denotes the j-th column of Ãt and

ỹj
t = A−1

t yt −
∑
i ̸=j

Ãt,:ie
hi,t/2. (11)

Notice that eq. (10) is a (conditionally) linear Gaussian regression model with inde-
pendent response variables, ỹj

t . Finally, eq. (11) is used to define the likelihood for
the vector hj, for each series j = 1, . . . , n. Together with the prior implied by the
autoregressive process (independent across j), one obtains the posterior full conditional
distribution for the entire path of the log-volatility process hj. As this distribution is
not of a known family, we use an adaptive random walk Metropolis-Hastings (aRWMH,
see Atchadé and Rosenthal, 2005) algorithm to draw samples from it. This approach
allows for computationally more efficient sampling of the log-volatility processes, as it
substitutes a standard forward loop over time t, with a cycle over the series j that can be
easily parallelized. Overall, this results in replacing a step of computational complexity
O(T ) with one of complexity O(n), whose cost can be further reduced by leveraging on
parallel computing. Furthermore, owing to the autoregressive structure of the process,
the joint distribution (over time) of the vector hj has fast decaying dependence. Over-
all, this implies that using a Gaussian proposal distribution with a diagonal covariance
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matrix, κ(m)
j · Sj, where Sj is diagonal and κ

(m)
j > 0 is the series-j adaptive scale at

iteration m = 1, . . . ,M , yields an asymptotic acceptance rate equal to 0.27.

2.2 Observation-driven: GARCH

The second time-varying specification we propose is the GARCH process. Despite the
wide popularity of the stochastic volatility specification in the recent macro-econometric
literature, GARCH models could be considered as alternative specification of time-
varying volatility (Clark and Ravazzolo, 2015). The main differences between SV and
GARCH models is that, conditioning on the information set available at time t − 1,
the SV process is unpredictable due to the inclusion of a fully random innovation,
whereas the GARCH process is fully predictable, as it depends only on the previous
time observables and latent volatility. One way to include observation-driven time-
varying volatility in eq. (4) is by assuming a GARCH(1,1) process for each diagonal
element of Ht as:

Ht = diag
(
σ2
1,t, . . . , σ

2
n,t

)
,

σ2
j,t = ωj + αjϵ

2
j,t−1 + γjσ

2
j,t−1

= ωj + αj

(
yj,t−1 −Xt−1β − wt−1θ1,jσj,t−1

)2
+ γjσ

2
j,t−1,

(12)

where the parameters need to follow the following constraints to ensure stationarity:
ωj > 0, αj ≥ 0, γj ≥ 0, and (αj + γj) < 1. The model in eq. (3)-(4)-(12) is called
the quantile multivariate regression with generalized autoregressive conditional het-
eroskedasticity model (QR-GARCH). As in the previous case, one obtains the quan-
tile multivariate VAR model with GARCH (QVAR-GARCH) by including lags of the
response variable among the covariates.

Plugging (12) into eq. (5) results as in the SV case in a model including the square
root of the volatility in the mean equation for yt as

yt = Xtβ + wtΘ1σt +
√
wtΘ2A diag(σt)zt, (13)

where σt = (σ1,t, . . . , σn,t)
′. Conditional on wt, this framework resembles a VAR with

GARCH in mean (VAR-GARCH-M) model. The main difference is that the VAR-
GARCH-M model includes the vector of volatilities, σ2

t , whereas we have the vector of
square roots of volatilities, σt.

As stated in the stochastic volatility scenario, we remove Xtβ for notational sim-
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plicity. Then, following the approach defined in eq. (9), one obtains:

ỹj
t = Ãt,:jσj,t + z̄t, z̄t ∼ Nn(0, Ht). (14)

where

ỹj
t = A−1

t yt −
∑
i ̸=j

Ãt,:iσi,t. (15)

Similarly to eq. (11) for the stochastic volatility case, eq. (15) allows to single out the
contribution of the jth time-varying variance to the likelihood, thus allowing to design
an efficient algorithm to make inference on σ2

j,t and the associated static parameters, for
each series j = 1, . . . , n.

3 Model Estimation and Evaluation

3.1 Bayesian Inference

In this section, we provide the details of the estimation of our proposed multivariate
quantile regression model with stochastic volatility and GARCH error terms.

We start the description from the common parameters across the QR-SV and QR-
GARCH models, that is the vectorized matrix of coefficients, β, and the vector contain-
ing the non zero elements of the j-th row of the A matrix, aj. We assume the following
prior distributions:

β ∼ Nnk(µβ
,Σβ), aj ∼ Nj−1(µa,j

,Σa,j), j = 2, . . . , n, (16)

where the hyperparameters are chosen such as to be noninformative. Notice that, in
high-dimensional settings, this structure can be easily extended to allow for global-local
shrinkage priors, however this is beyond the scope of this article.

For the QR-SV model, the prior specification on the parameters of the log-volatility
equation follows the setup proposed in Kastner and Frühwirth-Schnatter (2014). For
each series j = 1, . . . , n, we specify the following prior distributions for the (transformed)
persistence parameter and the innovation variance of the log-volatility process:(1 + ϕj

2

)
∼ Be(aρ, bρ), σ2

h,j ∼ IG(aσ, bσ). (17)

For the QR-GARCH model we assume a Gaussian prior for the log-transformation of
the parameters and impose the stationarity condition by truncating the support of the
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joint prior (αj, γj) as follows:

log(ωj) ∼ N (µ
ω
, σ2

ω)(
log(αj)

log(γj)

)
∼ N2

((
µ
α

µ
γ

)
,

(
σ2
α 0

0 σ2
γ

))
I(αj + γj < 1).

(18)

As the joint posterior distribution is not tractable, we design an efficient Markov
chain Monte Carlo (MCMC) algorithm based on the Metropolis within Gibbs sampler
to approximate it. We refer to the Supplementary Material for the details of the full
conditional distributions of the parameters for all the models. Concerning the trajectory
of the time-varying volatility from the QR-SV model, the result in eq. (11) allows us
to design a sampling scheme for the whole path of hj, independently for each series
j = 1, . . . , n. In particular, the path of hj is drawn using an adaptive RWMH step with
Gaussian proposal given by:

h∗
j ∼ N

(
h
(m−1)
j , κ

(m−1)
j Sj

)
,

where Sj is a fixed covariance matrix and κ
(m−1)
j is a scalar scale parameter that is

adapted over the MCMC iterations m = 1, . . . ,M as in Atchadé and Rosenthal (2005).
This approach replaces a forward cycle over t = 1, . . . , T with an (independent) cycle
over j = 1, . . . , n, reducing the computational cost as typically n < T . Moreover,
as the dependence between the elements of the vector hj rapidly decays, the use of a
diagonal proposal covariance Sj yields satisfactory results. On the other hand, the static
parameters, ωj, αj, and γj, of the GARCH process in the QR-GARCH model, for j =

1, . . . , n, are sampled using an adaptive (a)RWMH algorithm with log-normal proposal.
Then, conditional on a draw of ωj, αj, γj, the path of the volatility σ2

j = (σ2
j,1, . . . , σ

2
j,T )

is computed.

3.2 Evaluation and combination

To assess the quality of the quantile forecasts, we rely on the quantile score (QS, see
Giacomini and Komunjer, 2005; Carriero et al., 2022) as a tail metric. The QS for
model k = 1, . . . , K, where K is the total number of models estimated in the forecasting
exercise, at forecasting horizon h = 1, . . . , H and quantile τ , is defined as:

QSk,τ,t+h = (yt+h − Q̂k,τ,t+h)⊙ (τ − I{yt≤Q̂k,τ,t+h}),
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where ⊙ denotes the Hadamard product, yt+h is the observed value of the vector re-
sponse to be forecasted, Q̂k,τ,t+h is the forecast of quantile τ under model k, and I{C}

is a vector-valued indicator function, whose jth element has value of 1 if the outcome
yj,t+h is at or below the forecasted quantile Q̂j,k,tau,t+h and 0 otherwise. Notice that
better performances are associated to lower values of the QS.

Besides model evaluation, we follow Aastveit et al. (2022) and propose a combination
of different models based on the QS. In particular, we provide two different forecast com-
binations based on time-varying weights (T-V) and constant (average) weights (AVG).
Concerning time-varying weights, we define the weight of model k at forecasting horizon
h and quantile τ as:

wk,τ,t+h =

∑ti+to−h
t=to

QS−1
k,τ,t∑K

j=1

∑ti+to−h
t=to

QS−1
j,τ,t

, (19)

where ti and to are the length of the in-sample and out-of-sample periods, respectively.
Therefore, the weights are a function of the past performance of each model k known
when the forecast is made. The resulting forecast combination is obtained as the time-
varying weighted average:

Qc,tv
τ,t+h =

K∑
k=1

wk,τ,t+h ×QSk,τ,t+h, (20)

where the acronym tv states for time-varying weights. As a second weighting scheme,
we consider the forecast combination obtained by using the temporal average of the
weights defined in eq. (19), that is:

w̄k,τ =
1

to

to∑
t=1

wk,τ,t+h, (21)

which yield the average forecast combination:

Qc,avg
τ,t+h =

K∑
k=1

w̄k,τ ×Qk,τ,t+h, (22)

where the acronym avg states for weight average and in the following tables, we use
Q(V)AR Combination (T-V) and (AVG) to define the time-varying and average weights,
respectively.

To compare the performances across the different models, we apply the Diebold-
Mariano t-test (Diebold and Mariano, 1995) for equality of the quantile scores to com-
pare the predictions of alternative models with the benchmark for a given horizon h.
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The differences in accuracy that are statistically different from zero are denoted with
one, two, or three asterisks, corresponding to significance level of 10%, 5% and 1%, re-
spectively. Our use of the Diebold-Mariano test, with forecasters from models that are
in many cases nested is deliberated choice as in Clark and Ravazzolo (2015). We report
the p-values based on one-sided tests, taking the QVAR as the null and the other current
models as alternative. Within the univariate models, we take as bechmark the quantile
autoregressive (QAR, e.g., see Xiao, 2017). Finally, we applied the model confidence set
procedure of Hansen et al. (2011) across models for a fixed horizon to jointly compare
their predictive power without disentangling univariate and multivariate models. The
results are discussed in the following section.

4 Application

We use eight quarterly macroeconomic variables and one financial variable as in Iacopini
et al. (2022). In particular, data starts in the first quarter of 1971 and ends in the second
quarter of 2022. For the macroeconomic variables, we follow the usual transformation
as highlighted in Table 1, while for the Chicago Fed National Financial Condition In-
dex (NFCI), we use levels. The transformed variables have then been standardized to
facilitate comparisons of the estimated coefficients.

Description Fred Mnemonic Transformation
Average Weekly Hours AWHMAN 0.1xt

CPI Inflation CPIAUCSL 100∆ ln (xt)
Industrial Production INDPRO 100∆ ln (xt)
S& P 500 S&P500 100∆ ln (xt)
Federal Funds Rate FEDFUNDS ∆xt

10 years Government Treasury yield GS10 ∆xt

Unemployment Rate UNRATE ∆xt

Real Gross Domestic Product GDPC1 400∆ ln (xt)

Table 1: Data Transformation

In light of the key role that time-varying volatility will play in our forecasting results,
we start by looking at the movements of the volatility for some specific variables and
quantiles. For all the models analyzed, we use a quantile VAR model with one lag
considering 17 quantiles (ranging from 0.1 to 0.9, equally spaced). Here below, for
simplicity we provide the results for selected quantiles, but the representation of all the
quantiles are available in the Supplementary Material.

Turning to the real-time out-of-sample forecast exercise, we compare all the models
based on the quantile score and provide further details of each model’s performance by
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plotting over time the quantile score and the weights of the combination scheme. As
the data are collected at quarterly frequency, we use both a rolling and an expanding
window for the forecasting exercise, and set the length of the in-sample period to 160

quarters, corresponding to the first 40 years. Therefore, the out-of-sample period starts
on the first quarter of 2011 and finishes on the second quarter of 2022.

Figure 1 illustrates the quantile scores for the QVAR-SV model over time based
on an expanding window approach2 for three different quantiles: τ = 0.1 (blue line);
τ = 0.5 (red), and τ = 0.9 (yellow). For each macroeconomic (GDP and unemployment
rate) and financial (NFCI) variables, we find evidence of wide changes occurred to the
left and right tails of the predictive distribution across time, whereas the median is
rather stable over the whole sample, with a small upward peak during the COVID-19
pandemic.

In particular, the quantile score of GDP at the 90th percentile displays three high
peaks around 2013:Q2, 2014:Q4, and 2017:Q3, which signal a worsening of the forecast-
ing performance of the model during these periods. The second peak in the last quarter
of 2014 occurs in correspondence to a drop of US GDP from 5.0 percent in Q3 to 2.5 in
Q4. This slow down of real GDP growth was primarily driven by an upturn in imports,
a downturn in federal government spending, and decelerations in nonresidential fixed
investment and in exports that were partly offset by an upturn in private inventory in-
vestment. On the other hand, notice the rise of the quantile score at the 10th percentile
around the first quarter of 2013 occurred in correspondence with the first decline of US
economic growth since the 2009 financial crisis, which was caused by negative contri-
butions from private inventory investment, federal government spending, and exports.
Finally, the highest peaks of the lower and upper quantiles coincide with the COVID-19
pandemic that introduced a worldwide recession. Interestingly, the forecasting perfor-
mance at the 10th percentile has worsened during the forth quarter of 2021, whereas a
change at the 90th occurred only later, in the first quarter of 2022, at the outbreak of
the Russia-Ukraine war. Moreover, we remark that the performance of the QVAR-SV
model for the median is rather stable across time, except for the COVID-19 pandemic.

The quantile scores for the unemployment rate have an overall similar pattern over
time, with some additional occasional falls of the performance for the 10th percentile and
smaller drops for the 90th percentile before the outbreak of COVID-19. In particular, the
left tail quantile shows a peak in the quantile score of about 3.0 in 2014:Q4 corresponding
to one of the largest over-the-year decline since the end of the last recession, dropping
1.3 percentage points, to 5.7 percent in 2014:Q4. A second important peak of the QS
(about 2.7) happened in 2017:Q2, in correspondence with the lowest unemployment

2The results for the rolling window approach are shown in the Supplementary Material.
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Figure 1: Quantile scores over time for the QVAR-SV model for GDP (top left), Unemploy-
ment rate (top right) and NFCI (bottom center), with different quantiles: τ = 0.1 (blue line);
τ = 0.5 (red) and τ = 0.9 (yellow).

rate since the fourth quarter of 2000, and it was twice as large as the 2016 decline.
On the other hand, the QS for the right tail quantile witness lower peaks and its value
overlaps with the left tail quantile during the first quarter of 2019. During this period,
the US economy continued to expand, and the number of employed people increased by
2.0 million over the year, reaching 158.6 million in 2019:Q4. This growth was smaller
than the over-the-year increase of 2.8 million in 2018, partly reflecting slower population
growth. As stated for the GDP, the highest peaks in the QS occur during the COVID-19
pandemic, where the lock-downs in US increased the unemployment rate to 8.1 percent,
close to value registered during the Great recession. Concerning the median, the QS
is stable across time and during the COVID-19 pandemic provides evidence of small
peaks.

Finally, the QS for the NFCI shows a sinusoidal trajectory for the 10th percentile
and lower peaks for the 90th percentile. The strong increase in the QS during the
COVID-19 pandemic previously described for macroeconomic variable is also witnessed
for this financial variables, except for the median, which is rather flat. Moreover, in
the left tail quantile, the periods between the second and last quarter of 2013, the last
quarter of 2016 and the whole 2018 highlight important dynamics. These periods are
strictly related to the US debt-ceiling crisis of 2013, and the 2015–2016 stock market
selloff, which was characterized by a decline of the stock prices. Moreover it includes
2018, the worst year for stocks since the financial crisis since S&P 500 index finished

14



the year down 6%, the Dow Jones Industrial Average dropped 5.6%, and the NASDAQ
composite slid nearly 4%.

Overall, these findings support the claim that commonly-used approaches modeling
the conditional mean and median are likely to miss meaningful changes of the macroe-
conomic and financial tail risks, thus supporting the use of a (multivariate) quantile
regression framework.

τ
=

0
.1

τ
=

0
.5

τ
=

0
.9

Figure 2: Time-varying combination weights for GDP for the QVAR-SV (red line); QVAR-
GARCH (yellow) and QVAR (blue) with different quantiles: τ = 0.1 (top left), τ = 0.5 (top
right) and τ = 0.9 (bottom center).

Figures 2 and 3 show the time-varying weights associated with the three QVAR mod-
els with constant volatility, stochastic volatility, and GARCH effects for the GDP and
the NFCI, respectively. Figure 2 plots the results for three different quantiles: the 10th,
50th, and 90th percentiles. First, we notice the large uncertainty on the weights, with
substantial variation over time. Second, for the left and right quantile, we find evidence
of an intense change of the relative performance of the different time-varying volatility
specifications over time. Moreover, the constant volatility framework lags behind across
all the quantiles and almost all periods considered, supporting the claim that, paralleling
conditional mean models, time-varying volatility improves the forecasting performance
for conditional quantiles. Finally, for the 10th percentile, in 2012–2013 and 2018–2019,
there is evidence of the importance of one time-varying volatility model, with weights
around 90%. These patterns are less evident in the median quantile, while in the 90th
percentile is strong only in the period around 2017 and 2018. Conversely, we notice
that since the outbreak of the COVID-19 pandemic, the relative performance of all the
models seems to have leveled up, as the combination weights are evenly distributed.
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Figure 3: Time-varying combination weights for NFCI for the QVAR-SV (red line); QVAR-
GARCH (yellow) and QVAR (blue) with different quantiles: τ = 0.1 (top left), τ = 0.5 (top
right) and τ = 0.9 (bottom center).

Figure 3 reports the time-varying weights for the financial variable, NFCI. The
homoskedastic QVAR model has almost zero weight for all the percentiles analyzed,
except a few isolated spikes for the 10th and 90th percentile. Looking closer, the left
quantile provides evidence that the QVAR-GARCH model is the best performing (in
relative terms), except between 2014–2015, where the QVAR-SV model was the best.
On the other hand, when investigating the right quantile models’ performances are less
persistent across time, witnessing numerous switched between QVAR-SV and QVAR-
GARCH. However, similarly to the left tail, the QVAR-SV model seems to be the best
model from 2014 to 2015, while the QVAR-GARCH model has highest weights from 2018
to 2020. Regarding the median, there is evidence in favor of QVAR-GARCH effects,
while the homoskedastic case is important only at the beginning of the out-of-sample.

Table 2: Quantile Score for different variables (columns) and percentiles (τ = 0.1, 0.3, 0.5, 0.7 and
0.9).

Variable AWHMAN CPIAUCSL INDPRO S&P500 FEDFUNDS GS10 UNRATE NFCI GDPC1
Quantile: τ = 0.1

QVAR 1.699 1.128 1.598 1.806 1.855 2.078 1.901 1.497 1.793
QVAR-SV 0.601∗∗∗ 0.568∗∗ 0.627∗∗∗ 0.425∗∗∗ 0.618∗∗∗ 0.591∗∗∗ 0.963∗∗∗ 0.643∗∗∗ 0.643∗∗∗

QVAR-GARCH 1.091 0.476∗∗∗ 0.932 0.523∗∗∗ 0.347∗∗∗ 0.570∗∗∗ 1.126∗ 0.349∗∗∗ 0.974∗

QVAR Combination (AVG) 1.136∗∗ 0.538∗∗∗ 0.731∗∗∗ 0.512∗∗∗ 0.482∗∗∗ 0.574∗∗∗ 1.050∗∗ 0.450∗∗∗ 0.828∗∗∗

QVAR Combination (T-V) 0.360∗∗∗ 1.100 0.511∗∗∗ 0.415∗∗∗ 0.480∗∗∗ 0.463∗∗∗ 0.581∗∗∗ 0.591∗∗∗ 0.480∗∗∗

QAR 1.763 1.869 1.728 1.514 1.277 1.732 1.937 1.604 1.788
QAR-SV 1.721 2.261 1.643 1.933 1.950 1.864 1.979 2.315 1.836
QAR-GARCH 2.054 2.562 2.279 2.370 1.754 2.242 1.953 1.651 2.163
QAR Combination (AVG) 1.792 2.224 1.690 1.673 1.441 2.048 1.937 1.843 1.886
QAR Combination (T-V) 1.705 1.974 1.565 0.997∗∗∗ 0.905∗∗∗ 0.758∗∗∗ 0.841∗∗∗ 0.657∗∗∗ 0.405∗∗∗

Quantile: τ = 0.3

QVAR 0.579 0.634 0.551 0.701 0.436 0.744 0.841 0.426 0.760
QVAR-SV 0.393∗∗ 0.410∗∗∗ 0.368∗∗∗ 0.321∗∗∗ 0.266∗∗∗ 0.443∗∗∗ 0.645∗∗ 0.361 0.426∗∗∗

QVAR-GARCH 0.659 0.416∗∗∗ 0.755 0.472 0.220∗∗∗ 0.677 0.565∗∗∗ 0.228∗∗∗ 0.694
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QVAR Combination (AVG) 0.396∗∗∗ 0.412∗∗∗ 0.395∗∗∗ 0.449∗ 0.220∗∗∗ 0.544∗ 0.601∗∗∗ 0.247∗∗∗ 0.438∗∗∗

QVAR Combination (T-V) 0.630 0.784 0.422∗ 0.338∗∗∗ 0.352 0.383∗∗∗ 0.514∗∗∗ 0.479 0.407∗∗∗

QAR 0.771 0.794 0.682 0.530 0.522 0.667 0.989 0.642 0.731
QAR-SV 0.785 0.857 0.816 0.700 0.667 0.776 0.950 0.928 0.777
QAR-GARCH 0.828 0.909 1.076 0.793 0.606 0.910 1.010 0.628 0.994
QAR Combination (AVG) 0.768 0.854 0.800 0.649 0.601 0.693 0.958 0.688 0.743
QAR Combination (T-V) 1.402 1.542 1.168 0.818 0.721 0.601 0.708∗∗∗ 0.511∗∗∗ 0.373∗∗∗

Quantile: τ = 0.5

QVAR 0.510 0.403 0.506 0.403 0.323 0.472 0.725 0.325 0.508
QAR-SV 0.389∗∗∗ 0.279∗∗∗ 0.383∗∗ 0.313∗ 0.173∗∗∗ 0.312∗∗∗ 0.446∗∗∗ 0.180∗∗∗ 0.383∗∗∗

QAR-GARCH 0.340∗∗∗ 0.273∗∗∗ 0.368∗∗ 0.293∗∗ 0.151∗∗∗ 0.274∗∗∗ 0.357∗∗∗ 0.123∗∗∗ 0.363∗∗∗

QVAR Combination (AVG) 0.384∗∗∗ 0.273∗∗∗ 0.370∗∗∗ 0.330∗∗ 0.148∗∗∗ 0.285∗∗∗ 0.389∗∗∗ 0.175∗∗∗ 0.359∗∗∗

QVAR Combination (T-V) 0.623 0.624 0.393∗∗ 0.387 0.248 0.313∗ 0.458∗∗∗ 0.341 0.376∗∗∗

QAR 0.336 0.285 0.339 0.294 0.234 0.249 0.410 0.103 0.365
QAR-SV 0.338 0.285 0.331 0.276 0.263 0.263 0.388∗ 0.173 0.353
QAR-GARCH 0.328 0.280 0.331 0.286 0.095∗∗∗ 0.264 0.380∗∗ 0.076∗∗ 0.337∗

QAR Combination (AVG) 0.334 0.278 0.325 0.282∗ 0.194∗∗ 0.252 0.379∗∗ 0.091 0.340∗∗

QAR Combination (T-V) 1.010 1.127 0.871 0.572 0.502 0.428 0.588 0.358 0.345
Quantile: τ = 0.7

QVAR 0.578 0.530 0.526 0.755 0.569 0.688 0.739 0.414 0.613
QVAR-SV 0.473∗∗ 0.389∗∗∗ 0.426∗∗ 0.469∗∗∗ 0.306∗∗∗ 0.416∗∗∗ 0.380∗∗∗ 0.265∗∗ 0.449∗∗

QVAR-GARCH 0.471∗ 0.317∗∗∗ 0.520 0.506∗∗∗ 0.239∗∗∗ 0.362∗∗∗ 1.047 0.266 0.688
QVAR Combination (AVG) 0.482∗∗∗ 0.374∗∗∗ 0.459 0.548∗∗∗ 0.383∗∗∗ 0.414∗∗∗ 0.608 0.252∗ 0.564
QVAR Combination (T-V) 0.451 0.408∗∗ 0.246∗∗ 0.375∗∗∗ 0.226∗∗∗ 0.272∗∗∗ 0.375∗∗∗ 0.219∗∗∗ 0.344∗∗∗

QAR 0.770 0.588 0.679 0.809 0.483 0.650 0.559 0.400 0.774
QAR-SV 0.803 0.684 0.807 0.875 0.757 0.709 0.574 0.611 0.806
QAR-GARCH 0.971 0.511∗ 0.869 0.948 0.375∗∗∗ 0.734 0.664 0.178∗∗∗ 0.875
QAR Combination (AVG) 0.834 0.557 0.708 0.932 0.468 0.698 0.577 0.335∗∗∗ 0.817
QAR Combination (T-V) 0.604 0.675 0.503 0.351∗∗∗ 0.391 0.284∗∗∗ 0.447∗∗ 0.228∗∗∗ 0.313∗∗∗

Quantile: τ = 0.9

QVAR 2.115 1.822 1.804 2.050 1.618 1.853 1.881 1.180 1.814
QVAR-SV 0.665∗∗∗ 0.488∗∗∗ 0.553∗∗∗ 0.754∗∗∗ 0.417∗∗∗ 0.526∗∗∗ 0.616∗∗∗ 0.344∗∗∗ 0.684∗∗∗

QVAR-GARCH 0.725∗∗∗ 0.396∗∗∗ 0.696∗∗∗ 0.893∗∗∗ 0.564∗∗∗ 0.587∗∗∗ 1.892 0.564∗ 1.022∗

QVAR Combination (AVG) 0.717∗∗∗ 1.492∗∗∗ 1.207∗∗∗ 0.759∗∗∗ 0.484∗∗∗ 0.515∗∗∗ 1.364 0.568∗∗ 0.792∗∗∗

QVAR Combination (T-V) 0.238∗∗∗ 0.187∗∗∗ 0.147∗∗∗ 0.304∗∗∗ 0.140∗∗∗ 0.198∗∗∗ 0.322∗∗∗ 0.111∗∗∗ 0.315∗∗∗

QAR 1.745 1.415 1.666 1.815 1.370 1.518 1.667 1.319 1.734
QAR-SV 1.964 1.911 1.980 1.911 1.502 1.792 1.407∗∗ 1.647 1.939
QAR-GARCH 2.205 1.099∗∗ 2.012 2.356 1.558 1.842 1.608 0.832∗∗∗ 1.751
QAR Combination (AVG) 1.917 1.218∗∗ 1.915 1.906 1.466 1.696 1.519∗ 1.519 1.810
QAR Combination (T-V) 0.203∗∗∗ 0.225∗∗∗ 0.170∗∗∗ 0.115∗∗∗ 0.105∗∗∗ 0.127∗∗∗ 0.318∗∗∗ 0.077∗∗∗ 0.277∗∗∗

1 Please refer to Section 2 for the details on models. All forecasts are produced with a one-step-ahead expanding window process.
2 ∗∗∗, ∗∗ and ∗ indicate that ratios are significantly different from 1 at 1%, 5% and 10%, according to the Diebold-Mariano test.
3 Bold numbers indicate models that belong to the Superior Set of Models delivered by the MCS procedure at confidence level 10%.

Moving to the forecasting exercise, we have compared the QVAR model with 1 lag
and different time-varying volatility for various quantile levels τ ∈ {0.1, 0.2, . . . , 0.9} by
using an expanding window approach. Besides the multivariate models, we have also
considered the univariate model specification for the QAR, QAR-SV and QAR-GARCH
model. For completeness, we have included in the table the forecast combination with
time-varying weights and as weighted average for the multivariate and univariate model.

Table 2 shows the results of the forecasting exercise across variables (in column) for
five quantile levels, τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, using an expanding window approach.
It also reports the outcome of the Diebold-Mariano (DM) test against the benchmark
(the univariate and multivariate quantile VAR with constant volatility) and the model
confidence set at 10% with respect to all the models.

In line with the previously commented graphical inspection, Table 2 provides evi-
dence supporting the variation of the models’ forecasting performance across the variable
of interest and the quantile investigated. At the 10th percentile, there is evidence of
better forecasting results from QVAR models, for each variable, and this is confirmed
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by the model confidence set. Moreover, for inflation, federal reserve funds, and NFCI,
the best model is the QVAR-GARCH, whereas for the other variables the combination
of multivariate models yields more promising forecasts. These results are also confirmed
by the Diebold-Mariano test, which highlights a significant difference in the performance
of models with time-varying volatility compared to the homoskedastic benchmark. Fi-
nally, the Diebold-Mariano test and the model confidence set suggest that the most
suitable model for the left tail (10th percentile) is the (multivariate) model combination
obtained using time-varying weights. Concerning the 30th percentile, the QVAR-SV is
the best model for inflation, average weekly hours, and industrial production. On the
other hand, for better forecasts of the unemployment rate and the GDP are obtained
using a combination of multivariate QVAR models.

In terms of the median (τ = 0.5), the model confidence set shows no strong evidence
in favor of the inclusion of time-varying volatility, however the DM test indicates that
QVAR models with either stochastic volatility or GARCH statistically outperform the
benchmark at the 10% level. Regarding the right tail at the 70th percentile, we find
strong evidence in favor of time-varying volatility models and the model combination.
Overall, including SV and GARCH improves the QVAR performance across all the vari-
ables, according to both the model confidence set and the DM test. In more details,
when forecasting inflation and NFCI, including GARCH specification leads to improve-
ments in both multivariate and univariate models. Moreover, using a combination of
multivariate models with constant weights improves the performance for almost all the
variables, except S&P 500 and GDP, where the differences in favor of univariate combi-
nation are smaller with respect to the multivariate specification. At the 90th percentile,
the results provide strong evidence supporting the inclusion of time-varying volatility
in multivariate models. In particular, the QVAR-SV model yields better performances
for almost all the variables, except inflation. However, the best specification for all
variables is the univariate model combination with time-varying weights, whereas the
same combination of multivariate specifications has slighlty worse performance despite
belonging to the model confidence set in most of the cases.

Overall, these results highlight that accounting for time-varying volatility in its dif-
ferent specifications improves forecast accuracy, both using univariate and multivariate
settings, especially when investigating the tails. Moreover, the multivariate framework
provide better performances overall, with the multivariate model combination obtained
using time-varying weights appearing as the most accurate in many quantile/variable
settings. Conversely, when modeling the median, these improvements are less remark-
able and have lower statistical significance. This suggests that, when a forecaster is
concerned with predicting the tail behavior of a variable, accounting for time-varying is
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crucial to obtain more reliable results.

5 Conclusions

Motivated by the increasing interest of central bankers, researchers and policy institu-
tions in tail risk evaluation and forecasting, we extended the multivariate quantile regres-
sion framework to account for alternative time-varying volatility specification, through
stochastic volatility or GARCH effects. These models have been complemented by a
model combination that exploits the quantile score to define the (possibly time-varying)
weights. To make inference on the latent volatility paths, we designed an efficient
MCMC algorithm that allows us to sample the entire path of the series-specific time-
varying volatility jointly and independently across equations, allowing for meaningful
computational savings.

We applied the proposed methods in multivariate and univariate formulation to fore-
cast US macroeconomic and financial data at several quantile levels. The main findings
highlight that including time-varying volatility significantly improves the forecasting
performance in all cases, especially on the tails of the distribution. Moreover, as no sin-
gle model is found to besupeiror than others across quantiles or variables, we propose a
multivariate model combination with time-varying weighting scheme.
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